Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Med Virol ; 96(6): e29742, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38874263

RESUMO

Polyomaviruses BK (BKPyV) and JC (JCPyV), belonging to the Polyomaviridae, are responsible for human pathologies. In kidney transplant recipients, BKPyV replication can lead to irreversible nephron damage whereas JCPyV replication remains asymptomatic. Concomitant replication is rare and potential competition between the infections has been described. The aim of this retrospective case-control study was to describe the molecular epidemiology and risk factors associated with BKPyV and JCPyV replication in a cohort of kidney transplant recipients. In total, 655 urine samples from 460 patients were tested for BKPyV and JCPyV DNA. Positive samples were submitted to strain genotyping. Demographic and clinical characteristics were also compared. Isolated JCPyV and BKPyV was found in 16.5% and 23.3% of patients, respectively; co-replication was rare (3.9%). BKPyV strains Ib-2, Ib-1, and IVc-2 were the most prevalent. JCPyV strains mostly belonged to genotypes 4 and 1B. During follow-up, JCPyV shedding significantly reduced the risk of BKPyV DNAuria, with an odds ratio of 0.57 (95% confidence interval: 0.35-0.99), and was associated with better prognosis than BKPyV replication, based on the estimated glomerular filtration rate. Molecular epidemiology of BKPyV and JCPyV strains in our region was similar to previous studies. This study suggests that JCPyV is benign and appears to limit damaging BKPyV replication. JCPyV DNAuria screening could thus be a useful strategy to predict BKPyV-related outcomes.


Assuntos
Vírus BK , Genótipo , Vírus JC , Transplante de Rim , Epidemiologia Molecular , Infecções por Polyomavirus , Humanos , Vírus BK/genética , Vírus BK/isolamento & purificação , Infecções por Polyomavirus/epidemiologia , Infecções por Polyomavirus/virologia , Infecções por Polyomavirus/urina , Transplante de Rim/efeitos adversos , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Vírus JC/genética , Vírus JC/isolamento & purificação , Estudos de Casos e Controles , Adulto , Eliminação de Partículas Virais , Idoso , Transplantados/estatística & dados numéricos , Infecções Tumorais por Vírus/epidemiologia , Infecções Tumorais por Vírus/virologia , Infecções Tumorais por Vírus/urina , DNA Viral/urina , DNA Viral/genética , Aloenxertos/virologia
2.
Pathogens ; 13(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38668270

RESUMO

BACKGROUND/OBJECTIVES: In the absence of an effective antiviral treatment for BK polyomavirus (BKPyV), a better understanding of the epidemiology and time course of BKPyV replication after kidney transplantation is needed to limit the virus's impact on the graft outcome. METHODS: In a 7-year study, we screened more than 430 kidney transplant recipients and analyzed the time course and virological characteristics of BKPyV replication. RESULTS: Urinary viral replication was observed in 116 (27%) of the 430 patients, and 90 of the 116 (78%) had viral DNAemia. Thirty-eight patients (8.8%) were presumed to have nephropathy (DNAemia > 4 log10 copies/mL). Of the patients with BKPyV replication, 48%, 60%, 71%, and 80% were first found to be positive one, two, three, and four months post-transplantation. The initial viral load in the urine was below 7 log10 copies/mL in 100% of the patients with viral replication first detected before the first month, and this proportion was 57% when viral replication was first detected after the first month. When the BKPyV replication was first detected in a urine sample at month 3 or later, 81.5% of patients had concomitant BKPyV DNAemia. The predominant viral subtype was Ib2 (60%), and there was no apparent relationship between the subtype and the time course of BKPyV replication. CONCLUSIONS: Urinary BKPyV replication occurs early after renal transplantation and in most patients will increase to a level requiring therapeutic intervention. Close monitoring for BKPyV in the early post-transplantation period would enable the pre-emptive adjustment of the immunosuppression regimen.

3.
Front Med (Lausanne) ; 10: 1281625, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38093979

RESUMO

Background: BK polyomavirus replication leads to progressive tubulointerstitial nephritis and ureteral stenosis, with a considerable risk of subsequent graft failure in kidney transplant recipients. Since specific antiviral therapies are lacking, new tools are required to enhance the biological monitoring of the infection. Viral microRNAs are promising new biomarkers, but the performance of RT-qPCR methods limits the clinical application and the validation of a standard method for quantification. Methods: We compared TaqMan microRNA Assays and TaqMan Advanced miRNA Assays for bkv-miR-B1-3p and bkv-miR-B1-5p quantification in synthetic microRNA templates and in 44 urine samples belonging to 14 consecutive kidney transplant recipients with BK polyomavirus replication from Amiens University Medical Center in a 1-year span. Results: Cycle threshold values were constantly higher with TaqMan Advanced MicroRNA Assays. TaqMan microRNA Assays showed better performance in predicting the good prognosis of BK polyomavirus nephropathy. Conclusion: Overall, TaqMan MicroRNA Assays appeared to be a more sensitive and accurate RT-qPCR method than TaqMan Advanced MicroRNA Assays to quantify bkv-miR-B1-3p and bkv-miR-B1-5p BKPyV miRNAs in patients' urine samples.

4.
Int J Mol Sci ; 23(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35806242

RESUMO

BACKGROUND: Bkv-miR-B1-5p is a viral micro-RNA (miRNA) specifically produced during BK polyomavirus (BKPyV) replication. Recent studies have suggested using bkv-miR-B1-5p as a biomarker to monitor viral infection and predict complications in kidney transplant patients. To identify the technical limitations of this miRNA quantification in biological samples, knowledge of its stability and distribution in the extracellular compartment is necessary. Moreover, a proof of concept for using bkv-miR-B1-5p as a biomarker of active replication in chronic infection is still missing in the published literature. METHODS: The stability of bkv-miR-B1-5p was evaluated in samples derived from cell cultures and in urine from BKPyV-infected kidney transplant recipients. The miRNA was quantified in different fractions of the extracellular compartment, including exosomes, and protein binding was evaluated. Finally, we developed an in vitro model for chronic culture of BKPyV clinical isolates to observe changes in the bkv-miR-B1-5p level during persistent infections. RESULTS: Bkv-miR-B1-5p is a stable biomarker in samples from humans and in vitro experiments. Marginally associated with the exosomes, most of the circulating bkv-miR-B1-5p is bound to proteins, especially Ago2, so the miRNA quantification does not require specific exosome isolation. The bkv-miR-B1-5p level is predictable of viral infectivity, which makes it a potential specific biomarker of active BKPyV replication after kidney transplantation.


Assuntos
Vírus BK , Nefropatias , Transplante de Rim , MicroRNAs , Infecções por Polyomavirus , Vírus BK/genética , Biomarcadores , Humanos , Nefropatias/etiologia , Transplante de Rim/efeitos adversos , MicroRNAs/genética , Infecções por Polyomavirus/genética , RNA Viral/genética , Replicação Viral
5.
Viruses ; 13(2)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672313

RESUMO

BACKGROUND: Kidney transplant recipients (KTRs) are exposed to a high risk of BK polyomavirus (BKPyV) replication, which in turn may lead to graft loss. Although the microRNAs (miRNAs) bkv-miR-B1-3p and bkv-miR-B1-5p are produced during the viral cycle, their putative value as markers of viral replication has yet to be established. In KTRs, the clinical relevance of the changes over time in BKPyV miRNA levels has not been determined. METHODS: In a retrospective study, we analyzed 186 urine samples and 120 plasma samples collected from 67 KTRs during the first year post-transplantation. Using a reproducible, standardized, quantitative RT-PCR assay, we measured the levels of bkv-miR-B1-3p and bkv-miR-B1-5p (relative to the BKPyV DNA load). RESULTS: Detection of the two miRNAs had low diagnostic value for identifying patients with DNAemia or for predicting DNAuria during follow-up. Seven of the 14 KTRs with a sustained BKPyV infection within the first year post-transplantation showed a progressive reduction in the DNA load and then a rapid disappearance of the miRNAs. DNA and miRNA loads were stable in the other seven KTRs. CONCLUSIONS: After the DNA-based diagnosis of BKPyV infection in KTRs, bkv-miR-B1-3p and bkv-miR-B1-5p levels in the urine might be valuable markers for viral replication monitoring and thus might help physicians to avoid an excessive reduction in the immunosuppressive regimen.


Assuntos
Vírus BK/fisiologia , MicroRNAs/genética , Infecções por Polyomavirus/virologia , Complicações Pós-Operatórias/virologia , RNA Viral/genética , Adulto , Idoso , Vírus BK/genética , Biomarcadores/sangue , Biomarcadores/urina , Feminino , Humanos , Transplante de Rim/efeitos adversos , Transplante de Rim/estatística & dados numéricos , Masculino , MicroRNAs/sangue , MicroRNAs/urina , Pessoa de Meia-Idade , Infecções por Polyomavirus/sangue , Infecções por Polyomavirus/etiologia , Infecções por Polyomavirus/urina , Complicações Pós-Operatórias/sangue , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/urina , RNA Viral/sangue , RNA Viral/urina , Estudos Retrospectivos , Transplantados/estatística & dados numéricos , Carga Viral , Replicação Viral
6.
Viruses ; 12(8)2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784805

RESUMO

Reactivation of BK polyomavirus (BKPyV) infection is frequently increasing in transplant recipients treated with potent immunosuppressants and highlights the importance of immune system components in controlling viral reactivation. However, the immune response to BKPyV in general and the role of antiviral cytokines in infection control in particular are poorly understood. Here, we investigated the efficacy of interferons (IFN) alpha, lambda and gamma with regard to the BKPyV multiplication in Vero cells. Treatment with IFN-gamma inhibited the expression of the viral protein VP1 in a dose-dependent manner and decreased the expression of early and late viral transcripts. Viral inhibition by IFN-gamma was confirmed in human cells (Caki-1 cells and renal proximal tubular epithelial cells). One of the IFN-stimulated genes most strongly induced by IFN-gamma was the coding for the enzyme indoleamine 2,3 dioxygenase (IDO), which is known to limit viral replication and regulates the host immune system. The antiviral activity induced by IFN-gamma could be reversed by the addition of an IDO inhibitor, indicating that IDO has a specific role in anti-BKPyV activity. A better understanding of the action mechanism of these IFN-gamma-induced antiviral proteins might facilitate the development of novel therapeutic strategies.


Assuntos
Vírus BK/efeitos dos fármacos , Vírus BK/fisiologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferon gama/farmacologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Interferon-alfa/imunologia , Interferon gama/imunologia , Interferons/imunologia , Interferons/farmacologia , Túbulos Renais Proximais , Transdução de Sinais , Células Vero , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
7.
J Virol ; 94(6)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31896595

RESUMO

Most people are asymptomatic carriers of the BK polyomavirus (BKPyV), but the mechanisms of persistence and immune evasion remain poorly understood. Furthermore, BKPyV is responsible for nephropathies in kidney transplant recipients. Unfortunately, the sole therapeutic option is to modulate immunosuppression, which increases the risk of transplant rejection. Using iodixanol density gradients, we observed that Vero and renal proximal tubular epithelial infected cells release two populations of infectious particles, one of which cosediments with extracellular vesicles (EVs). Electron microscopy confirmed that a single vesicle could traffic tens of viral particles. In contrast to naked virions, the EV-associated particles (eBKPyVs) were not able to agglutinate red blood cells and did not use cell surface sialylated glycans as an attachment factor, demonstrating that different entry pathways were involved for each type of infectious particle. However, we also observed that naked BKPyV and eBKPyV were equally sensitive to neutralization by the serum of a seropositive patient or commercially available polyvalent immunoglobulin preparations, which occurred at a postattachment step, after endocytosis. In conclusion, our work shows a new mechanism that likely plays a critical role during the primary infection and in the persistence, but also the reactivation, of BKPyV.IMPORTANCE Reactivation of BKPyV is responsible for nephropathies in kidney transplant recipients, which frequently lead to graft loss. The mechanisms of persistence and immune evasion used by this virus remain poorly understood, and a therapeutic option for transplant patients is still lacking. Here, we show that BKPyV can be released into EVs, enabling viral particles to infect cells using an alternative entry pathway. This provides a new view of BKPyV pathogenesis. Even though we did not find any decreased sensitivity to neutralizing antibodies when comparing EV-associated particles and naked virions, our study also raises important questions about developing prevention strategies based on the induction or administration of neutralizing antibodies. Deciphering this new release pathway could enable the identification of therapeutic targets to prevent BKPyV nephropathies. It could also lead to a better understanding of the pathophysiology of other polyomaviruses that are associated with human diseases.


Assuntos
Vírus BK/metabolismo , Vesículas Extracelulares/metabolismo , Infecções por Polyomavirus/transmissão , Animais , Vírus BK/genética , Vírus BK/patogenicidade , Chlorocebus aethiops , Vesículas Extracelulares/genética , Vesículas Extracelulares/virologia , Infecções por Polyomavirus/genética , Infecções por Polyomavirus/metabolismo , Células Vero
9.
J Clin Virol ; 116: 4-6, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30986626

RESUMO

BACKGROUND: Assessment of the intensity of immunosuppression in transplant recipients to estimate the risk of rejection and infection is not entirely satisfactory at the present time. Determination of Torque teno virus (TTV) viral load appears to be a promising tool in this setting. OBJECTIVES: We evaluated the level of replication and kinetics of TTV during the first three months after kidney transplantation compared to BK virus replication. RESULTS: In a retrospective cohort of 116 renal transplant recipients, TTV viral load gradually increased during the first three months post-transplantation with no significant difference or discriminatory threshold between patients with and without BK virus replication. However, the level of TTV replication appeared to be indirectly related to the risk of BK virus replication, particularly according to the induction treatment used (antithymocyte globulin: ATG or basiliximab). Among patients receiving ATG, those receiving cyclosporine had significantly lower TTV viral loads (p < 0.01) with threefold lower reactivation of BKPyV (13 vs 37%) 3 months post-transplantation. Similarly, among the women in our cohort, TTV viral load was significantly higher in women receiving ATG (6.58 ± 1.57 versus 4.62 ± 2.0 log10 copies/mL for basiliximab: p < 0.01), also with threefold higher BKPyV reactivation frequencies (40 vs 13,3%). CONCLUSION: The multiparametric variation of TTV viral load does not appear to be individually appropriate for the early detection or monitoring of possible post-transplant BKPyV virus reactivation in renal transplant recipients.


Assuntos
Vírus BK/fisiologia , Transplante de Rim/efeitos adversos , Torque teno virus/fisiologia , Adulto , Vírus BK/efeitos dos fármacos , Vírus BK/genética , Biomarcadores/sangue , DNA Viral/sangue , Feminino , Humanos , Terapia de Imunossupressão , Imunossupressores/uso terapêutico , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Torque teno virus/efeitos dos fármacos , Torque teno virus/genética , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
10.
J Virol ; 92(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30068644

RESUMO

In the hepatitis C virus (HCV) envelope glycoproteins E1 and E2, which form a heterodimer, E2 is the receptor binding protein and the major target of neutralizing antibodies, whereas the function of E1 remains less characterized. To investigate E1 functions, we generated a series of mutants in the conserved residues of the C-terminal region of the E1 ectodomain in the context of an infectious clone. We focused our analyses on two regions of interest. The first region is located in the middle of the E1 glycoprotein (between amino acid [aa] 270 and aa 291), which contains a conserved hydrophobic sequence and was proposed to constitute a putative fusion peptide. The second series of mutants was generated in the region from aa 314 to aa 342 (the aa314-342 region), which has been shown to contain two α helices (α2 and α3) by nuclear magnetic resonance studies. Of the 22 generated mutants, 20 were either attenuated or noninfectious. Several mutations modulated the virus's dependence on claudin-1 and the scavenger receptor BI coreceptors for entry. Most of the mutations in the putative fusion peptide region affected virus assembly. Conversely, mutations in the α-helix aa 315 to 324 (315-324) residues M318, W320, D321, and M322 resulted in a complete loss of infectivity without any impact on E1E2 folding and on viral assembly. Further characterization of the W320A mutant in the HCVpp model indicated that the loss of infectivity was due to a defect in viral entry. Together, these results support a role for E1 in modulating HCV interaction with its coreceptors and in HCV assembly. They also highlight the involvement of α-helix 315-324 in a late step of HCV entry.IMPORTANCE HCV is a major public health problem worldwide. The virion harbors two envelope proteins, E1 and E2, which are involved at different steps of the viral life cycle. Whereas E2 has been extensively characterized, the function of E1 remains poorly defined. We characterized here the function of the putative fusion peptide and the region containing α helices of the E1 ectodomain, which had been previously suggested to be important for virus entry. We could confirm the importance of these regions for the virus infectivity. Interestingly, we found several residues modulating the virus's dependence on several HCV receptors, thus highlighting the role of E1 in the interaction of the virus with cellular receptors. Whereas mutations in the putative fusion peptide affected HCV infectivity and morphogenesis, several mutations in the α2-helix region led to a loss of infectivity with no effect on assembly, indicating a role of this region in virus entry.


Assuntos
Hepacivirus/fisiologia , Proteínas do Envelope Viral/metabolismo , Montagem de Vírus , Internalização do Vírus , Linhagem Celular , Análise Mutacional de DNA , Hepatócitos/virologia , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas do Envelope Viral/genética
11.
Anticancer Res ; 37(3): 1049-1057, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28314264

RESUMO

BACKGROUND/AIM: Organ transplant patients treated with the immunosuppressive drug cyclosporine A often present malignant kidney tumors. Cyclosporine A can promote oncogenesis in a cell-intrinsic manner by increasing the production of vascular endothelial growth factor (VEGF). MATERIALS AND METHODS: We explored the impact of cyclosporine A and the role of the unfolded protein response (UPR) on three human renal cell carcinoma (RCC) cell lines under normoxic and hypoxic (1% O2) conditions. RESULTS: Cyclosporine A regulated the expression of VEGF at the post-transcriptional level. Cyclosporine A induced the inositol requiring enzyme-1α (IRE1α) arm of the UPR and stabilized neosynthesized proteins in RCC cells. Toyocamycin, an inhibitor of IRE1α, abolished the clonogenic growth of RCC cells and reduced induction of VEGF by cyclosporine A under hypoxia. CONCLUSION: Our findings highlight the impact of cyclosporine A on the proteostasis of RCC cells, and suggest the potential therapeutic interest of targeting the UPR against tumors arising in the context of organ transplantation.


Assuntos
Carcinoma de Células Renais/metabolismo , Ciclosporina/química , Regulação Neoplásica da Expressão Gênica , Imunossupressores/química , Neoplasias Renais/metabolismo , Resposta a Proteínas não Dobradas , Linhagem Celular Tumoral/efeitos dos fármacos , Endorribonucleases/metabolismo , Regulação da Expressão Gênica , Humanos , Hipóxia , Oxigênio/metabolismo , Reação em Cadeia da Polimerase , Proteínas Serina-Treonina Quinases/metabolismo , Puromicina/química , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Toiocamicina/química , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
J Virol ; 91(8)2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28179528

RESUMO

Hepatitis C virus (HCV) envelope glycoprotein complex is composed of E1 and E2 subunits. E2 is the receptor-binding protein as well as the major target of neutralizing antibodies, whereas the functions of E1 remain poorly defined. Here, we took advantage of the recently published structure of the N-terminal region of the E1 ectodomain to interrogate the functions of this glycoprotein by mutating residues within this 79-amino-acid region in the context of an infectious clone. The phenotypes of the mutants were characterized to determine the effects of the mutations on virus entry, replication, and assembly. Furthermore, biochemical approaches were also used to characterize the folding and assembly of E1E2 heterodimers. Thirteen out of 19 mutations led to viral attenuation or inactivation. Interestingly, two attenuated mutants, T213A and I262A, were less dependent on claudin-1 for cellular entry in Huh-7 cells. Instead, these viruses relied on claudin-6, indicating a shift in receptor dependence for these two mutants in the target cell line. An unexpected phenotype was also observed for mutant D263A which was no longer infectious but still showed a good level of core protein secretion. Furthermore, genomic RNA was absent from these noninfectious viral particles, indicating that the D263A mutation leads to the assembly and release of viral particles devoid of genomic RNA. Finally, a change in subcellular colocalization between HCV RNA and E1 was observed for the D263A mutant. This unique observation highlights for the first time cross talk between HCV glycoprotein E1 and the genomic RNA during HCV morphogenesis.IMPORTANCE Hepatitis C virus (HCV) infection is a major public health problem worldwide. It encodes two envelope proteins, E1 and E2, which play a major role in the life cycle of this virus. E2 has been extensively characterized, whereas E1 remains poorly understood. Here, we investigated E1 functions by using site-directed mutagenesis in the context of the viral life cycle. Our results identify unique phenotypes. Unexpectedly, two mutants clearly showed a shift in receptor dependence for cell entry, highlighting a role for E1 in modulating HCV particle interaction with a cellular receptor(s). More importantly, another mutant led to the assembly and release of viral particles devoid of genomic RNA. This unique phenotype was further characterized, and we observed a change in subcellular colocalization between HCV RNA and E1. This unique observation highlights for the first time cross talk between a viral envelope protein and genomic RNA during morphogenesis.


Assuntos
Hepacivirus/fisiologia , Proteínas do Envelope Viral/metabolismo , Montagem de Vírus , Internalização do Vírus , Linhagem Celular , Análise Mutacional de DNA , Hepacivirus/genética , Hepatócitos/virologia , Humanos , Mutação de Sentido Incorreto , Dobramento de Proteína , Multimerização Proteica , Receptores Virais/metabolismo , Proteínas do Envelope Viral/genética
13.
PLoS One ; 11(2): e0149064, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26871442

RESUMO

Carbohydrate binding agents (CBAs), including natural lectins, are more and more considered as broad-spectrum antivirals. These molecules are able to directly inhibit many viruses such as Human Immunodeficiency Virus (HIV), Hepatitis C Virus (HCV), Dengue Virus, Ebola Virus or Severe Acute Respiratory Syndrome Coronavirus through binding to envelope protein N-glycans. In the case of HIV, it has been shown that CBAs select for mutant viruses with N-glycosylation site deletions which are more sensitive to neutralizing antibodies. In this study we aimed at evaluating the HCV resistance to CBAs in vitro. HCV was cultivated in the presence of increasing Galanthus nivalis agglutinin (GNA), Cyanovirin-N, Concanavalin-A or Griffithsin concentrations, during more than eight weeks. At the end of lectin exposure, the genome of the isolated strains was sequenced and several potential resistance mutations in the E1E2 envelope glycoproteins were identified. The effect of these mutations on viral fitness as well as on sensitivity to inhibition by lectins, soluble CD81 or the 3/11 neutralizing antibody was assessed. Surprisingly, none of these mutations, alone or in combination, conferred resistance to CBAs. In contrast, we observed that some mutants were more sensitive to 3/11 or CD81-LEL inhibition. Additionally, several mutations were identified in the Core and the non-structural proteins. Thus, our results suggest that in contrast to HIV, HCV resistance to CBAs is not directly conferred by mutations in the envelope protein genes but could occur through an indirect mechanism involving mutations in other viral proteins. Further investigations are needed to completely elucidate the underlying mechanisms.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Lectinas/farmacologia , Sequência de Aminoácidos , Anticorpos Monoclonais , Linhagem Celular Tumoral , Sequência Conservada , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Viral , Hepacivirus/genética , Humanos , Mutação de Sentido Incorreto , Análise de Sequência de DNA , Tetraspanina 28/antagonistas & inibidores , Proteínas do Envelope Viral/genética , Replicação Viral/efeitos dos fármacos
14.
J Clin Microbiol ; 53(12): 3822-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26424842

RESUMO

With the growing importance of BK virus (BKV), effective and efficient screening for BKV replication in plasma and urine samples is very important for monitoring renal transplant and hematopoietic stem cell transplant recipients, who are at increased risk of BKV-associated diseases. However, recent assays proposed by many manufacturers have not been tested, and the available tests have not been standardized. The aim of the present study was to evaluate and compare the performances of three commercially available kits, R-gene, GeneProof, and RealStar, on plasma and urine specimens from patients infected with various genotypes and to determine the correlations with the results from a reference laboratory. A qualitatively excellent global agreement (96.8%) was obtained. RealStar PCR tended to give a higher sensitivity, especially for subtype Ib1 samples. Comparison of 30 plasma samples and 53 urine samples showed a good agreement between the three assays, with Spearman's Rho correlation coefficient values falling between 0.92 and 0.98 (P < 0.001). Moreover, a perfect correlation was obtained for comparison of the assay performances with the AcroMetrix BKV panel (P < 0.001 for all comparisons). According to Bland-Altman analysis, more than 95% (240/249 comparisons) of sample comparisons were situated in the range of the mean ± 2 standard deviations (SD). The greatest variability between assays was observed for 10.2% of subtype Ib2 samples, with differences of >1 log10 copies/ml. In conclusion, this study demonstrated the reliable and comparable performances of the R-gene, GeneProof, and RealStar real-time PCR systems for quantification of BKV in urine and plasma samples. All three real-time PCR assays are appropriate for screening of BKV replication in patients.


Assuntos
Vírus BK/genética , Vírus BK/isolamento & purificação , Técnicas de Diagnóstico Molecular/métodos , Plasma/virologia , Urina/virologia , Carga Viral/métodos , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infecções por Polyomavirus/virologia
15.
J Virol ; 89(19): 10053-63, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26202241

RESUMO

UNLABELLED: Despite the validation of direct-acting antivirals for hepatitis C treatment, the discovery of new compounds with different modes of action may still be of importance for the treatment of special patient populations. We recently identified a natural molecule, epigallocatechin-3-gallate (EGCG), as an inhibitor of hepatitis C virus (HCV) targeting the viral particle. The aim of this work was to discover new natural compounds with higher anti-HCV activity than that of EGCG and determine their mode of action. Eight natural molecules with structure similarity to EGCG were selected. HCV JFH1 in cell culture and HCV pseudoparticle systems were used to determine the antiviral activity and mechanism of action of the compounds. We identified delphinidin, a polyphenol belonging to the anthocyanidin family, as a new inhibitor of HCV entry. Delphinidin inhibits HCV entry in a pangenotypic manner by acting directly on the viral particle and impairing its attachment to the cell surface. Importantly, it is also active against HCV in primary human hepatocytes, with no apparent cytotoxicity and in combination with interferon and boceprevir in cell culture. Different approaches showed that neither aggregation nor destruction of the particle occurred. Cryo-transmission electron microscopy observations of HCV pseudoparticles treated with delphinidin or EGCG showed a bulge on particles that was not observed under control conditions. In conclusion, EGCG and delphinidin inhibit HCV entry by a new mechanism, i.e., alteration of the viral particle structure that impairs its attachment to the cell surface. IMPORTANCE: In this article, we identify a new inhibitor of hepatitis C virus (HCV) infection, delphinidin, that prevents HCV entry. This natural compound, a plant pigment responsible for the blue-purple color of flowers and berries, belongs to the flavonoid family, like the catechin EGCG, the major component present in green tea extract, which is also an inhibitor of HCV entry. We studied the mode of action of these two compounds against HCV and demonstrated that they both act directly on the virus, inducing a bulging of the viral envelope. This deformation might be responsible for the observed inhibition of virus attachment to the cell surface. The discovery of such HCV inhibitors with an unusual mode of action is important to better characterize the mechanism of HCV entry into hepatocytes and to help develop a new class of HCV entry inhibitors.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/fisiologia , Polifenóis/farmacologia , Internalização do Vírus/efeitos dos fármacos , Antocianinas/administração & dosagem , Antocianinas/farmacologia , Antivirais/administração & dosagem , Catequina/análogos & derivados , Catequina/farmacologia , Linhagem Celular , Microscopia Crioeletrônica , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Hepacivirus/ultraestrutura , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Interferon-alfa/administração & dosagem , Polifenóis/administração & dosagem , Prolina/administração & dosagem , Prolina/análogos & derivados
16.
J Virol ; 89(16): 8346-64, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26041282

RESUMO

UNLABELLED: In our study, we characterized the effect of monensin, an ionophore that is known to raise the intracellular pH, on the hepatitis C virus (HCV) life cycle. We showed that monensin inhibits HCV entry in a pangenotypic and dose-dependent manner. Monensin induces an alkalization of intracellular organelles, leading to an inhibition of the fusion step between viral and cellular membranes. Interestingly, we demonstrated that HCV cell-to-cell transmission is dependent on the vesicular pH. Using the selective pressure of monensin, we selected a monensin-resistant virus which has evolved to use a new entry route that is partially pH and clathrin independent. Characterization of this mutant led to the identification of two mutations in envelope proteins, the Y297H mutation in E1 and the I399T mutation in hypervariable region 1 (HVR1) of E2, which confer resistance to monensin and thus allow HCV to use a pH-independent entry route. Interestingly, the I399T mutation introduces an N-glycosylation site within HVR1 and increases the density of virions and their sensitivity to neutralization with anti-apolipoprotein E (anti-ApoE) antibodies, suggesting that this mutation likely induces conformational changes in HVR1 that in turn modulate the association with ApoE. Strikingly, the I399T mutation dramatically reduces HCV cell-to-cell spread. In summary, we identified a mutation in HVR1 that overcomes the vesicular pH dependence, modifies the biophysical properties of particles, and drastically reduces cell-to-cell transmission, indicating that the regulation by HVR1 of particle association with ApoE might control the pH dependence of cell-free and cell-to-cell transmission. Thus, HVR1 and ApoE are critical regulators of HCV propagation. IMPORTANCE: Although several cell surface proteins have been identified as entry factors for hepatitis C virus (HCV), the precise mechanisms regulating its transmission to hepatic cells are still unclear. In our study, we used monensin A, an ionophore that is known to raise the intracellular pH, and demonstrated that cell-free and cell-to-cell transmission pathways are both pH-dependent processes. We generated monensin-resistant viruses that displayed different entry routes and biophysical properties. Thanks to these mutants, we highlighted the importance of hypervariable region 1 (HVR1) of the E2 envelope protein for the association of particles with apolipoprotein E, which in turn might control the pH dependency of cell-free and cell-to-cell transmission.


Assuntos
Hepacivirus/fisiologia , Ionóforos/farmacologia , Monensin/farmacologia , Proteínas do Envelope Viral/genética , Proteínas Virais/genética , Internalização do Vírus/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Farmacorresistência Viral/genética , Técnica Indireta de Fluorescência para Anticorpo , Hepacivirus/genética , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Mutação de Sentido Incorreto/genética , Testes de Neutralização , Proteínas Virais/metabolismo
17.
Antiviral Res ; 118: 93-102, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25823619

RESUMO

Hepatitis C Virus (HCV) chronic infection is a major cause of hepatocellular carcinoma. Sorafenib is the only medical treatment that has been approved for the treatment of this cancer. It is a multikinase inhibitor with anti-tumor activity against a wide variety of cancers. Sorafenib blocks angiogenesis and tumor cell proliferation through inhibition of kinases, such as VEGFR2, PDGFR, or the serine/threonine kinases RAF. Previous studies have reported an anti-HCV effect of sorafenib in vitro, but various mechanisms of action have been described. The aim of this study was to clarify the action of sorafenib on the complete HCV infectious cycle. In order to examine the action of sorafenib on all steps of the HCV infectious cycle, we used a combination of validated cell culture models, based on the HuH-7 reference cell line and primary human hepatocytes. We found that sorafenib blocks HCV infection by altering the viral entry step and the production of viral particles. Moreover, we observed that treatment with sorafenib lead to a modification of Claudin-1 expression and localization, which could partly be responsible for the anti-HCV effect. Collectively, our findings confirm the anti-HCV effect of sorafenib in vitro, while highlighting the complexity of the action of sorafenib on the HCV infectious cycle.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatócitos/virologia , Niacinamida/análogos & derivados , Compostos de Fenilureia/farmacologia , Células Cultivadas , Hepacivirus/fisiologia , Hepatócitos/efeitos dos fármacos , Humanos , Niacinamida/farmacologia , Sorafenibe , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
18.
J Gen Virol ; 96(Pt 2): 311-321, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25351725

RESUMO

Core plays a critical role during hepatitis C virus (HCV) assembly, not only as a structural component of the virion, but also as a regulator of the formation of assembly sites. In this study, we observed that core is expressed later than other HCV proteins in a single viral cycle assay, resulting in a relative increase of core expression during a late step of the viral life cycle. This delayed core expression results from an increase of core half-life, indicating that core is initially degraded and is stabilized at a late step of the HCV life cycle. Stabilization-mediated delayed kinetics of core expression were also observed using heterologous expression systems. Core stabilization did not depend on its interaction with non-structural proteins or lipid droplets but was correlated with its expression levels and its oligomerization status. Therefore in the course of a HCV infection, core stabilization is likely to occur when the prior amplification of the viral genome during an initial replication step allows core to be synthesized at higher levels as a stable protein, during the assembly step of the viral life cycle.


Assuntos
Regulação Viral da Expressão Gênica , Hepacivirus/fisiologia , Proteínas do Core Viral/biossíntese , Replicação Viral , Linhagem Celular , Perfilação da Expressão Gênica , Hepacivirus/genética , Hepatócitos/virologia , Humanos , Estabilidade Proteica , Fatores de Tempo , Proteínas do Core Viral/genética
19.
J Virol ; 88(18): 10584-97, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24990994

RESUMO

UNLABELLED: In spite of the high variability of its sequence, hepatitis C virus (HCV) envelope glycoprotein E2 contains several conserved regions. In this study, we explored the structural and functional features of the highly conserved E2 segment from amino acid (aa) 502 to 520, which had been proposed as a fusion peptide and shown to strongly overlap a potential conserved neutralizing epitope. For this purpose, we used reverse genetics to introduce point mutations within this region, and we characterized the phenotypes of these mutants in the light of the recently published structure of E2. The functional analyses showed that their phenotypes are in agreement with the positions of the corresponding residues in the E2 crystal structure. In contrast, our data ruled out the involvement of this region in membrane fusion, and they indicate that alternative conformations would be necessary to expose the potential neutralizing epitope present in this segment. Of particular interest, we identified three specific mutations (Y507L, V514A, and V515A) located within this neutralizing epitope which only mildly reduced infectivity and showed no assembly defect. These mutations modulated HCV dependence on the viral receptor SRB1, and/or they also modulated virion sensitivity to neutralizing antibodies. Importantly, their characterization also showed that amino acids Y507, V514, and V515 contribute to E2 interaction with HCV receptor CD81. In conclusion, our data show that the highly conserved E2 segment from aa 502 to 520 plays a key role in cell entry by influencing the association of the viral particle with coreceptors and neutralizing antibodies. IMPORTANCE: Hepatitis C virus (HCV) envelope proteins E1 and E2 exhibit sequence variability. However, some segments of the envelope proteins are highly conserved, suggesting that these sequences play a key role at some steps of the HCV life cycle. In this work, we characterized the function and structure of a highly conserved E2 region that is targeted by neutralizing antibodies and had been proposed as a fusion peptide. Our data ruled out the involvement of this region in membrane fusion but allowed for the identification of new residues modulating the interaction of the virus with entry factors and its sensitivity to neutralizing antibodies. Moreover, structural data suggest that alternative conformations could exist for E2, which would explain the presence of a partially masked neutralizing epitope in this segment in the currently available E2 structure. Overall, our findings highlight the importance of conserved regions in the sequences of HCV envelope proteins.


Assuntos
Hepacivirus/metabolismo , Hepatite C/metabolismo , Receptores Virais/metabolismo , Receptores Depuradores Classe B/metabolismo , Tetraspanina 28/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Sequência de Aminoácidos , Sequência Conservada , Hepacivirus/química , Hepacivirus/genética , Hepatite C/genética , Hepatite C/virologia , Humanos , Modelos Moleculares , Ligação Proteica , Receptores Virais/genética , Receptores Depuradores Classe B/genética , Alinhamento de Sequência , Tetraspanina 28/genética , Proteínas do Envelope Viral/genética
20.
J Virol ; 88(1): 667-78, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24173227

RESUMO

Serine is encoded by two divergent codon types, UCN and AGY, which are not interchangeable by a single nucleotide substitution. Switching between codon types therefore occurs via intermediates (threonine or cysteine) or via simultaneous tandem substitutions. Hepatitis C virus (HCV) chronically infects 2 to 3% of the global population. The highly variable glycoproteins E1 and E2 decorate the surface of the viral envelope, facilitate cellular entry, and are targets for host immunity. Comparative sequence analysis of globally sampled E1E2 genes, coupled with phylogenetic analysis, reveals the signatures of multiple archaic codon-switching events at seven highly conserved serine residues. Limited detection of intermediate phenotypes indicates that associated fitness costs restrict their fixation in divergent HCV lineages. Mutational pathways underlying codon switching were probed via reverse genetics, assessing glycoprotein functionality using multiple in vitro systems. These data demonstrate selection against intermediate phenotypes can act at the structural/functional level, with some intermediates displaying impaired virion assembly and/or decreased capacity for target cell entry. These effects act in residue/isolate-specific manner. Selection against intermediates is also provided by humoral targeting, with some intermediates exhibiting increased epitope exposure and enhanced neutralization sensitivity, despite maintaining a capacity for target cell entry. Thus, purifying selection against intermediates limits their frequencies in globally sampled strains, with divergent functional constraints at the protein level restricting the fixation of deleterious mutations. Overall our study provides an experimental framework for identification of barriers limiting viral substitutional evolution and indicates that serine codon-switching represents a genomic "fossil record" of historical purifying selection against E1E2 intermediate phenotypes.


Assuntos
Códon , Evolução Molecular , Glicoproteínas/química , Hepacivirus/química , Serina/química , Glicoproteínas/genética , Fenótipo , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA