Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38193389

RESUMO

Trypanosoma cruzi, the etiological agent of Chagas disease is a protozoan parasite that infects phagocytic and non-phagocytic mammalian cells. At early stages of infection, trypomastigotes, the infective forms of this parasite, localize in a vesicular compartment called the T. cruzi parasitophorous vacuole until the exit of parasites to the host cell cytoplasm where continue their infective cycle. Rab proteins participate in the membrane traffic's molecular machinery, functioning as central regulators of vesicle recognition and transport. In previous work, we demonstrated that endocytic Rabs are key factors of the T. cruzi infection process in non-phagocytic cells, regulating the formation and the maturation of the vacuole. In this work, we identified and characterized other molecular components of the vesicular transport pathways and their participation in the T. cruzi infection. We found that Rab9a and Rab32, two regulators of the endocytic and autophagic pathways, were actively recruited to the T. cruzi vacuoles and favored the late stages of the infective process. The recruitment was specific and dependent on T. cruzi protein synthesis. Interestingly, Rab32 association depends on the presence of Rab9a in the vacuolar membrane, while the inhibition of the cysteine-protease cruzipain, a T. cruzi virulence factor, significantly decreases both Rab9a and Rab32 association with the vacuole. In summary, this work showed for the first time that specific molecules produced and secreted by the parasite can subvert intracellular components of host cells to benefit the infection. These new data shed light on the complex map of interactions between T. cruzi and the host cell and introduce concepts that can be useful in finding new forms of intervention against this parasite in the future.

2.
Microbiol Spectr ; 11(4): e0509622, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37404188

RESUMO

Polyclonal B cell activation and the resulting hypergammaglobulinemia are a detrimental consequence of visceral leishmaniasis (VL); however, the mechanisms underlying this excessive production of nonprotective antibodies are still poorly understood. Here, we show that a causative agent of VL, Leishmania donovani, induces CD21-dependent formation of tunneling nanotubule (TNT)-like protrusions in B cells. These intercellular connections are used by the parasite to disseminate among cells and propagate B cell activation, and close contact both among the cells and between B cells and parasites is required to achieve this activation. Direct contact between cells and parasites is also observed in vivo, as L. donovani can be detected in the splenic B cell area as early as 14 days postinfection. Interestingly, Leishmania parasites can also glide from macrophages to B cells via TNT-like protrusions. Taken together, our results suggest that, during in vivo infection, B cells may acquire L. donovani from macrophages via TNT-like protrusions, and these connections are subsequently exploited by the parasite to disseminate among B cells, thus propagating B cell activation and ultimately leading to polyclonal B cell activation. IMPORTANCE Leishmania donovani is a causative agent of visceral leishmaniasis, a potentially lethal disease characterized by strong B cell activation and the subsequent excessive production of nonprotective antibodies, which are known to worsen the disease. How Leishmania activates B cells is still unknown, particularly because this parasite mostly resides inside macrophages and would not have access to B cells during infection. In this study, we describe for the first time how the protozoan parasite Leishmania donovani induces and exploits the formation of protrusions that connect B lymphocytes with each other or with macrophages and glides on these structures from one cell to another. In this way, B cells can acquire Leishmania from macrophages and become activated upon contact with the parasites. This activation will then lead to antibody production. These findings provide an explanation for how the parasite may propagate B cell activation during infection.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Humanos , Leishmania donovani/fisiologia , Leishmaniose Visceral/parasitologia , Macrófagos
3.
mBio ; 13(6): e0257822, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36222510

RESUMO

Pathogen-specific rewiring of host cell metabolism creates the metabolically adapted microenvironment required for pathogen replication. Here, we investigated the mechanisms governing the modulation of macrophage mitochondrial properties by the vacuolar pathogen Leishmania. We report that induction of oxidative phosphorylation and mitochondrial biogenesis by Leishmania donovani requires the virulence glycolipid lipophosphoglycan, which stimulates the expression of key transcriptional regulators and structural genes associated with the electron transport chain. Leishmania-induced mitochondriogenesis also requires a lipophosphoglycan-independent pathway involving type I interferon (IFN) receptor signaling. The observation that pharmacological induction of mitochondrial biogenesis enables an avirulent lipophosphoglycan-defective L. donovani mutant to survive in macrophages supports the notion that mitochondrial biogenesis contributes to the creation of a metabolically adapted environment propitious to the colonization of host cells by the parasite. This study provides novel insight into the complex mechanism by which Leishmania metacyclic promastigotes alter host cell mitochondrial biogenesis and metabolism during the colonization process. IMPORTANCE To colonize host phagocytes, Leishmania metacyclic promastigotes subvert host defense mechanisms and create a specialized intracellular niche adapted to their replication. This is accomplished through the action of virulence factors, including the surface coat glycoconjugate lipophosphoglycan. In addition, Leishmania induces proliferation of host cell mitochondria as well as metabolic reprogramming of macrophages. These metabolic alterations are crucial to the colonization process of macrophages, as they may provide metabolites required for parasite growth. In this study, we describe a new key role for lipophosphoglycan in the stimulation of oxidative phosphorylation and mitochondrial biogenesis. We also demonstrate that host cell pattern recognition receptors Toll-like receptor 4 (TLR4) and endosomal TLRs mediate these Leishmania-induced alterations of host cell mitochondrial biology, which also require type I IFN signaling. These findings provide new insight into how Leishmania creates a metabolically adapted environment favorable to their replication.


Assuntos
Leishmania donovani , Biogênese de Organelas , Macrófagos/metabolismo , Glicoesfingolipídeos
4.
J Biol Chem ; 298(8): 102193, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35764169

RESUMO

Macrophages respond to their environment by adopting a predominantly inflammatory or anti-inflammatory profile, depending on the context. The polarization of the subsequent response is regulated by a combination of intrinsic and extrinsic signals and is associated with alterations in macrophage metabolism. Although macrophages are important producers of Wnt ligands, the role of Wnt signaling in regulating metabolic changes associated with macrophage polarization remains unclear. Wnt4 upregulation has been shown to be associated with tissue repair and suppression of age-associated inflammation, which led us to generate Wnt4-deficient bone marrow-derived macrophages to investigate its role in metabolism. We show that loss of Wnt4 led to modified mitochondrial structure, enhanced oxidative phosphorylation, and depleted intracellular lipid reserves, as the cells depended on fatty acid oxidation to fuel their mitochondria. Further we found that enhanced lipolysis was dependent on protein kinase C-mediated activation of lysosomal acid lipase in Wnt4-deficient bone marrow-derived macrophages. Although not irreversible, these metabolic changes promoted parasite survival during infection with Leishmania donovani. In conclusion, our results indicate that enhanced macrophage fatty acid oxidation impairs the control of intracellular pathogens, such as Leishmania. We further suggest that Wnt4 may represent a potential target in atherosclerosis, which is characterized by lipid storage in macrophages leading to them becoming foam cells.


Assuntos
Aterosclerose , Fosforilação Oxidativa , Aterosclerose/metabolismo , Ácidos Graxos/metabolismo , Humanos , Ligantes , Lipídeos , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Proteína Wnt4/metabolismo
5.
Microorganisms ; 10(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35336108

RESUMO

Hematopoietic stem/progenitor cells (HSPC) are responsible for the generation of most immune cells throughout the lifespan of the organism. Inflammation can activate bone marrow HSPCs, leading to enhanced myelopoiesis to replace cells, such as neutrophils, which are attracted to inflamed tissues. We have previously shown that HSPC activation promotes parasite persistence and expansion in experimental visceral leishmaniasis through the increased production of permissive monocytes. However, it is not clear if the presence of the parasite in the bone marrow was required for infection-adapted myelopoiesis. We therefore hypothesized that persistent forms of Leishmania major (cutaneous leishmaniasis) could also activate HSPCs and myeloid precursors in the C57Bl/6 mouse model of intradermal infection in the ear. The accrued influx of myeloid cells to the lesion site corresponded to an increase in myeloid-biased HSPCs in the bone marrow and spleen in mice infected with a persistent strain of L. major, together with an increase in monocytes and monocyte-derived myeloid cells in the spleen. Analysis of the bone marrow cytokine and chemokine environment revealed an attenuated type I and type II interferon response in the mice infected with the persistent strain compared to the self-healing strain, while both strains induced a rapid upregulation of myelopoietic cytokines, such as IL-1ß and GM-CSF. These results demonstrate that an active infection in the bone marrow is not necessary for the induction of infection-adapted myelopoiesis, and underline the importance of considering alterations to the bone marrow output when analyzing in vivo host-pathogen interactions.

6.
Infect Immun ; 90(3): e0018321, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35130453

RESUMO

To colonize mammalian phagocytic cells, the parasite Leishmania remodels phagosomes into parasitophorous vacuoles that can be either tight-fitting individual or communal. The molecular and cellular bases underlying the biogenesis and functionality of these two types of vacuoles are poorly understood. In this study, we investigated the contribution of host cell soluble N-ethylmaleimide-sensitive-factor attachment protein receptor proteins to the expansion and functionality of communal vacuoles as well as the replication of the parasite. The differential patterns of recruitment of soluble N-ethylmaleimide-sensitive-factor attachment protein receptor to communal vacuoles harboring Leishmania amazonensis and to individual vacuoles housing L. major led us to further investigate the roles of VAMP3 and VAMP8 in the interaction of Leishmania with its host cell. We show that whereas VAMP8 contributes to the optimal expansion of communal vacuoles, VAMP3 negatively regulates L. amazonensis replication, vacuole size, as well as antigen cross-presentation. In contrast, neither protein has an impact on the fate of L. major. Collectively, our data support a role for both VAMP3 and VAMP8 in the development and functionality of L. amazonensis-harboring communal parasitophorous vacuoles.


Assuntos
Leishmania mexicana , Leishmania , Animais , Habitação , Leishmania/fisiologia , Macrófagos/metabolismo , Mamíferos , Vacúolos/parasitologia , Proteína 3 Associada à Membrana da Vesícula/metabolismo
7.
PLoS Pathog ; 16(6): e1008291, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32479529

RESUMO

The protozoan parasite Leishmania donovani (L. donovani) causes visceral leishmaniasis, a chronic infection which is fatal when untreated. Herein, we investigated whether in addition to altering transcription, L. donovani modulates host mRNA translation to establish a successful infection. Polysome-profiling revealed that one third of protein-coding mRNAs expressed in primary mouse macrophages are differentially translated upon infection with L. donovani promastigotes or amastigotes. Gene ontology analysis identified key biological processes enriched for translationally regulated mRNAs and were predicted to be either activated (e.g. chromatin remodeling and RNA metabolism) or inhibited (e.g. intracellular trafficking and antigen presentation) upon infection. Mechanistic in silico and biochemical analyses showed selective activation mTOR- and eIF4A-dependent mRNA translation, including transcripts encoding central regulators of mRNA turnover and inflammation (i.e. PABPC1, EIF2AK2, and TGF-ß). L. donovani survival within macrophages was favored under mTOR inhibition but was dampened by pharmacological blockade of eIF4A. Overall, this study uncovers a vast yet selective reprogramming of the host cell translational landscape early during L. donovani infection, and suggests that some of these changes are involved in host defense mechanisms while others are part of parasite-driven survival strategies. Further in vitro and in vivo investigation will shed light on the contribution of mTOR- and eIF4A-dependent translational programs to the outcome of visceral leishmaniasis.


Assuntos
Fator de Iniciação 4A em Eucariotos/metabolismo , Leishmania donovani/metabolismo , Leishmaniose Visceral , Macrófagos , Biossíntese de Proteínas , RNA/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/patologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Macrófagos/patologia , Camundongos
8.
J Immunol ; 204(3): 596-610, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31882519

RESUMO

Immune evasion strategies adopted by Leishmania donovani involve the exploitation of suppressor of cytokine signaling (SOCS) proteins that are well-known negative regulators of the JAK/STAT pathway. However, the cellular mechanism underpinning the induction of SOCS isoforms and their role in breaching the multilevel regulatory circuit connecting the innate and adaptive arms of immunity are still ambiguous during experimental visceral leishmaniasis. Using bone marrow-derived macrophages (BMMфs) and CD4+ T cells, we observed that L. donovani preferentially upregulates SOCS1 and SOCS3 expression in macrophages and T cells, respectively, whereas the SOCS1 level remains consistently high in BMMфs and SOCS3 expression is pronounced and long lasting in T cells. Consequently, this inhibits STAT1-mediated IL-12 induction in macrophages & STAT4-mediated IFN-γ synthesis in T cells. Mechanistically, PI3K/Akt-mediated SRF activation promotes nuclear translocation and binding of Egr2 to SOCS1 promoter for its early induction in infected BMMфs. Additionally, L. donovani activates IDO/kynurenine/AHR signaling in BMMфs to maintain prolonged SOCS1 expression. Later, PGE2, secreted from infected BMMфs induces cAMP-PKA pathway by binding to the EP2/EP4 receptor of CD4+ T cells, leading to SP1, CREB, and GATA1 activation and SOCS3 expression. Small interfering RNA-mediated silencing of SOCS1 and SOCS3 in macrophage and T cells, respectively, restored IL-12 and IFN-γ cytokine levels and BMMф-T cell interaction. Vivo morpholino-mediated silencing of SOCS1 and SOCS3 resulted in protective cytokine responses, thereby reducing organ parasite burden significantly in L. donovani-infected BALB/c mice. Collectively, our results imply that L. donovani orchestrates different SOCS isoforms to impair macrophage-T cell cross-talk and preserve its own niche.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Leishmania donovani/fisiologia , Leishmaniose Visceral/imunologia , Macrófagos/imunologia , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Animais , Comunicação Celular , Células Cultivadas , Modelos Animais de Doenças , Humanos , Evasão da Resposta Imune , Imunidade Celular , Interferon gama/metabolismo , Interleucina-12/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Isoformas de Proteínas/genética , RNA Interferente Pequeno/genética , Transdução de Sinais , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 3 Supressora da Sinalização de Citocinas/genética , Regulação para Cima
9.
Artigo em Inglês | MEDLINE | ID: mdl-31555609

RESUMO

Leishmania (Viannia) braziliensis is responsible for the largest number of American tegumentary leishmaniasis (ATL) in Brazil. ATL can present several clinical forms including typical (TL) and atypical (AL) cutaneous and mucocutaneous (ML) lesions. To identify parasite and host factors potentially associated with these diverse clinical manifestations, we first surveyed the expression of two virulence-associated glycoconjugates, lipophosphoglycan (LPG) and the metalloprotease GP63 by a panel of promastigotes of Leishmania braziliensis (L. braziliensis) strains isolated from patients with different clinical manifestations of ATL and from the sand fly vector. We observed a diversity of expression patterns for both LPG and GP63, which may be related to strain-specific polymorphisms. Interestingly, we noted that GP63 activity varies from strain to strain, including the ability to cleave host cell molecules. We next evaluated the ability of promastigotes from these L. braziliensis strains to modulate phagolysosome biogenesis in bone marrow-derived macrophages (BMM), by assessing phagosomal recruitment of the lysosome-associated membrane protein 1 (LAMP-1) and intraphagosomal acidification. Whereas, three out of six L. braziliensis strains impaired the phagosomal recruitment of LAMP-1, only the ML strain inhibited phagosome acidification to the same extent as the L. donovani strain that was used as a positive control. While decreased phagosomal recruitment of LAMP-1 correlated with higher LPG levels, decreased phagosomal acidification correlated with higher GP63 levels. Finally, we observed that the ability to infect and replicate within host cells did not fully correlate with the inhibition of phagosome maturation. Collectively, our results revealed a diversity of strain-specific phenotypes among L. braziliensis isolates, consistent with the high genetic diversity within Leishmania populations.


Assuntos
Glicoesfingolipídeos/metabolismo , Interações Hospedeiro-Patógeno , Leishmania braziliensis/imunologia , Leishmaniose Mucocutânea/imunologia , Leishmaniose Mucocutânea/parasitologia , Metaloendopeptidases/metabolismo , Fagossomos/metabolismo , Animais , Células Cultivadas , Evasão da Resposta Imune , Leishmania braziliensis/crescimento & desenvolvimento , Proteína 1 de Membrana Associada ao Lisossomo/antagonistas & inibidores , Macrófagos/imunologia , Macrófagos/parasitologia , Camundongos Endogâmicos C57BL , Biogênese de Organelas
10.
Artigo em Inglês | MEDLINE | ID: mdl-31355149

RESUMO

Lipophosphoglycan (LPG) is the major Leishmania surface glycoconjugate having importance during the host-parasite interface. Leishmania (Viannia) braziliensis displays a spectrum of clinical forms including: typical cutaneous leishmaniasis (TL), mucocutaneous (ML), and atypical lesions (AL). Those variations in the immunopathology may be a result of intraspecies polymorphisms in the parasite's virulence factors. In this context, we evaluated the role of LPG of strains originated from patients with different clinical manifestations and the sandfly vector. Six isolates of L. braziliensis were used: M2903, RR051 and RR418 (TL), RR410 (AL), M15991 (ML), and M8401 (vector). LPGs were extracted and purified by hydrophobic interaction. Peritoneal macrophages from C57BL/6 and respective knock-outs (TLR2-/- and TLR-4-/-) were primed with IFN-γ and exposed to different LPGs for nitric oxide (NO) and cytokine production (IL-1ß, IL-6, IL-12, and TNF-α). LPGs differentially activated the production of NO and cytokines via TLR4. In order to ascertain if such functional variations were related to intraspecies polymorphisms in the LPG, the purified glycoconjugates were subjected to western blot with specific LPG antibodies (CA7AE and LT22). Based on antibody reactivity preliminary variations in the repeat units were detected. To confirm these findings, LPGs were depolymerized for purification of repeat units. After thin layer chromatography, intraspecies polymorphisms were confirmed especially in the type and/size of sugars branching-off the repeat units motif. In conclusion, different isolates of L. braziliensis from different clinical forms and hosts possess polymorphisms in their LPGs that functionally affected macrophage responses.


Assuntos
Glicoesfingolipídeos/química , Glicoesfingolipídeos/imunologia , Leishmania braziliensis/genética , Leishmania braziliensis/metabolismo , Leishmaniose Cutânea/imunologia , Ativação de Macrófagos , Receptor 4 Toll-Like/metabolismo , Animais , Citocinas/metabolismo , Técnicas de Inativação de Genes , Glicoesfingolipídeos/isolamento & purificação , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Macrófagos/imunologia , Macrófagos Peritoneais/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico , Psychodidae/parasitologia , Receptor 4 Toll-Like/genética , Fatores de Virulência
11.
J Immunol ; 202(4): 1163-1175, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30635391

RESUMO

Neutrophils, the essential components of the innate immune system, are recruited in large numbers to the pathogen site of entry. Several pathogens induce neutrophil autophagy; however, function of autophagic events during Leishmania parasite infection remain unknown. In this article, we report a finding that is new, to our knowledge, of how Leishmania-induced human polymorphonuclear neutrophil (hPMN) autophagy regulates the silent mode of parasite transfer to macrophages by influencing the engulfment of infected cells. Leishmania infection induced a time-dependent autophagy increase responsive to block by 3-methyladenine but sensitive to ULK1/2 inhibition only after 3 h. This suggested the prevalence of canonical autophagy during later hours, ULK1/2 inhibition being able to block only canonical autophagy. Interaction of Rubicon and Beclin-1 at 1 h postinfection affirmed the prevalence of noncanonical autophagy during early infection. There was a reduction in macrophage uptake of parasite-exposed hPMNs treated with 3-methyladenine or ULK1/2 inhibitor, suggesting the involvement of both noncanonical and canonical autophagy in neutrophil engulfment. Autophagy inducer rapamycin augmented neutrophil engulfment by macrophages. Redistribution of hPMN surface CD47 encouraged neutrophil uptake. Activation of ERK, phosphoinositide 3-kinase, and NADPH oxidase-mediated reactive oxygen species generation were induced after parasite binding. The lpg1-knockout parasites expressing defective lipophosphoglycan did not induce autophagy, indicating that lipophosphoglycan is necessary for interaction with the neutrophils. Autophagy induction was TLR2/4 independent because the receptor blockade did not interfere with infection-induced autophagy. In summary, the engulfment of neutrophils by the macrophages was influenced by the escalation of hPMN autophagy, which is an important event during Leishmania infection.


Assuntos
Autofagia/imunologia , Leishmania donovani/imunologia , Leishmaniose/imunologia , Neutrófilos/imunologia , Antibacterianos/farmacologia , Autofagia/efeitos dos fármacos , Voluntários Saudáveis , Humanos , Leishmania donovani/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Neutrófilos/efeitos dos fármacos , Sirolimo/farmacologia
12.
ChemMedChem ; 13(14): 1377-1386, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29722149

RESUMO

A rapid and practical approach for the discovery of new chemical matter for targeting pathogens and diseases is described. Fragment-based phenotypic lead discovery (FPLD) combines aspects of traditional fragment-based lead discovery (FBLD), which involves the screening of small-molecule fragment libraries to target specific proteins, with phenotypic lead discovery (PLD), which typically involves the screening of drug-like compounds in cell-based assays. To enable FPLD, a diverse library of fragments was first designed, assembled, and curated. This library of soluble, low-molecular-weight compounds was then pooled to expedite screening. Axenic cultures of Leishmania promastigotes were screened, and single hits were then tested for leishmanicidal activity against intracellular amastigote forms in infected murine bone-marrow-derived macrophages without evidence of toxicity toward mammalian cells. These studies demonstrate that FPLD can be a rapid and effective means to discover hits that can serve as leads for further medicinal chemistry purposes or as tool compounds for identifying known or novel targets.


Assuntos
Leishmania/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Células Cultivadas , Descoberta de Drogas/métodos , Feminino , Ensaios de Triagem em Larga Escala/métodos , Humanos , Indazóis/química , Indazóis/farmacologia , Indóis/química , Indóis/farmacologia , Macrófagos/parasitologia , Testes de Sensibilidade Parasitária/métodos
13.
Biochem Biophys Res Commun ; 495(2): 1964-1971, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29247647

RESUMO

Biogenesis of phagolysosomes is central to the elimination of pathogens by macrophages. We previously showed that Src homology region 2 domain-containing phosphatase 1 (SHP-1) participates in the regulation of phagosome maturation. Through proteomics, we identified moesin and the non-muscle myosin-IIA as proteins interacting with SHP-1 during phagocytosis. Silencing of either moesin or myosin IIA with small interfering RNA inhibited phagosomal acidification and recruitment of LAMP-1. Moreover, the intraphagosomal oxidative burst was impaired in the absence of either SHP-1 or myosin IIA but not moesin. Finally, absence of either SHP-1, moesin, or myosin IIA ablated the capacity of macrophages to clear bacterial infection. Collectively, these results implicate both moesin and myosin IIA in the regulation of phagolysosome biogenesis and in host defense against infections.


Assuntos
Escherichia coli/imunologia , Regulação da Expressão Gênica/imunologia , Macrófagos/imunologia , Proteínas dos Microfilamentos/imunologia , Miosina não Muscular Tipo IIA/imunologia , Fagocitose/imunologia , Fagossomos/imunologia , Animais , Células Cultivadas , Feminino , Camundongos , Camundongos Endogâmicos BALB C
14.
Sci Rep ; 7(1): 14321, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29084985

RESUMO

Lipophosphoglycan (LPG) is a key virulence factor expressed on the surfaces of Leishmania promastigotes. Although LPG is known to activate macrophages, the underlying mechanisms resulting in the production of prostaglandin E2 (PGE2) via signaling pathways remain unknown. Here, the inflammatory response arising from stimulation by Leishmania infantum LPG and/or its lipid and glycan motifs was evaluated with regard to PGE2 induction. Intact LPG, but not its glycan and lipid moieties, induced a range of proinflammatory responses, including PGE2 and nitric oxide (NO) release, increased lipid droplet formation, and iNOS and COX2 expression. LPG also induced ERK-1/2 and JNK phosphorylation in macrophages, in addition to the release of PGE2, MCP-1, IL-6, TNF-α and IL-12p70, but not IL-10. Pharmacological inhibition of ERK1/2 and PKC affected PGE2 and cytokine production. Moreover, treatment with rosiglitazone, an agonist of peroxisome proliferator-activated receptor gamma (PPAR-γ), also modulated the release of PGE2 and other proinflammatory mediators. Finally, we determined that LPG-induced PPAR-γ signaling occurred via TLR1/2. Taken together, these results reinforce the role played by L. infantum-derived LPG in the proinflammatory response seen in Leishmania infection.


Assuntos
Glicoesfingolipídeos/imunologia , Leishmania infantum/fisiologia , Leishmaniose Visceral/imunologia , Macrófagos/imunologia , PPAR gama/metabolismo , Receptor 1 Toll-Like/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Células Cultivadas , Dinoprostona/metabolismo , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/genética , Fatores de Virulência
15.
Dev Cell ; 39(6): 633-635, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27997821

RESUMO

Phagocytosis by professional and non-professional phagocytes plays a critical role in tissue homeostasis and the immune response. Using an airway inflammation model, Han et al. (2016) report in Nature that macrophages secrete IGF-1 to signal epithelial cells to stop ingesting apoptotic cells while increasing the uptake of anti-inflammatory macrophage-derived microvesicles.


Assuntos
Apoptose/imunologia , Macrófagos/imunologia , Humanos , Inflamação/imunologia , Fagócitos/imunologia , Fagocitose/imunologia
16.
PLoS Pathog ; 12(6): e1005690, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27280768

RESUMO

The protozoan Leishmania parasitizes macrophages and evades the microbicidal consequences of phagocytosis through the inhibition of phagolysosome biogenesis. In this study, we investigated the impact of this parasite on LC3-associated phagocytosis, a non-canonical autophagic process that enhances phagosome maturation and functions. We show that whereas internalization of L. major promastigotes by macrophages promoted LC3 lipidation, recruitment of LC3 to phagosomes was inhibited through the action of the parasite surface metalloprotease GP63. Reactive oxygen species generated by the NOX2 NADPH oxidase are necessary for LC3-associated phagocytosis. We found that L. major promastigotes prevented, in a GP63-dependent manner, the recruitment of NOX2 to phagosomes through a mechanism that does not involve NOX2 cleavage. Moreover, we found that the SNARE protein VAMP8, which regulates phagosomal assembly of the NADPH oxidase NOX2, was down-modulated by GP63. In the absence of VAMP8, recruitment of LC3 to phagosomes containing GP63-deficient parasites was inhibited, indicating that VAMP8 is involved in the phagosomal recruitment of LC3. These findings reveal a role for VAMP8 in LC3-associated phagocytosis and highlight a novel mechanism exploited by L. major promastigotes to interfere with the host antimicrobial machinery.


Assuntos
Leishmaniose Cutânea/metabolismo , Macrófagos/metabolismo , Metaloendopeptidases/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fagocitose/fisiologia , Proteínas R-SNARE/metabolismo , Animais , Western Blotting , Modelos Animais de Doenças , Leishmania major , Leishmaniose Cutânea/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Metaloendopeptidases/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Proteínas Associadas aos Microtúbulos/imunologia , Proteínas R-SNARE/imunologia
17.
PLoS Pathog ; 12(5): e1005658, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27191844

RESUMO

Cysteine peptidases play a central role in the biology of Leishmania. In this work, we sought to further elucidate the mechanism(s) by which the cysteine peptidase CPB contributes to L. mexicana virulence and whether CPB participates in the formation of large communal parasitophorous vacuoles induced by these parasites. We initially examined the impact of L. mexicana infection on the trafficking of VAMP3 and VAMP8, two endocytic SNARE proteins associated with phagolysosome biogenesis and function. Using a CPB-deficient mutant, we found that both VAMP3 and VAMP8 were down-modulated in a CPB-dependent manner. We also discovered that expression of the virulence-associated GPI-anchored metalloprotease GP63 was inhibited in the absence of CPB. Expression of GP63 in the CPB-deficient mutant was sufficient to down-modulate VAMP3 and VAMP8. Similarly, episomal expression of GP63 enabled the CPB-deficient mutant to establish infection in macrophages, induce the formation of large communal parasitophorous vacuoles, and cause lesions in mice. These findings implicate CPB in the regulation of GP63 expression and provide evidence that both GP63 and CPB are key virulence factors in L. mexicana.


Assuntos
Regulação da Expressão Gênica/fisiologia , Leishmania mexicana/patogenicidade , Leishmaniose Cutânea/metabolismo , Metaloendopeptidases/biossíntese , Proteínas de Protozoários/metabolismo , Animais , Western Blotting , Cisteína/metabolismo , Modelos Animais de Doenças , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Peptídeo Hidrolases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Virulência , Fatores de Virulência/metabolismo
18.
PLoS One ; 11(2): e0148640, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26871576

RESUMO

Leishmania, the causative agent of vector-borne diseases, known as leishmaniases, is an obligate intracellular parasite within mammalian hosts. The outcome of infection depends largely on the activation status of macrophages, the first line of mammalian defense and the major target cells for parasite replication. Understanding the strategies developed by the parasite to circumvent macrophage defense mechanisms and to survive within those cells help defining novel therapeutic approaches for leishmaniasis. We previously showed the formation of lipid droplets (LDs) in L. major infected macrophages. Here, we provide novel insights on the origin of the formed LDs by determining their cellular distribution and to what extent these high-energy sources are directed to the proximity of Leishmania parasites. We show that the ability of L. major to trigger macrophage LD accumulation is independent of parasite viability and uptake and can also be observed in non-infected cells through paracrine stimuli suggesting that LD formation is from cellular origin. The accumulation of LDs is demonstrated using confocal microscopy and live-cell imagin in parasite-free cytoplasmic region of the host cell, but also promptly recruited to the proximity of Leishmania parasites. Indeed LDs are observed inside parasitophorous vacuole and in parasite cytoplasm suggesting that Leishmania parasites besides producing their own LDs, may take advantage of these high energy sources. Otherwise, these LDs may help cells defending against parasitic infection. These metabolic changes, rising as common features during the last years, occur in host cells infected by a large number of pathogens and seem to play an important role in pathogenesis. Understanding how Leishmania parasites and different pathogens exploit this LD accumulation will help us define the common mechanism used by these different pathogens to manipulate and/or take advantage of this high-energy source.


Assuntos
Leishmania major/fisiologia , Leishmaniose Cutânea/patologia , Gotículas Lipídicas/parasitologia , Macrófagos/parasitologia , Animais , Células Cultivadas , Interações Hospedeiro-Parasita , Humanos , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/metabolismo , Leishmaniose Cutânea/parasitologia , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/patologia , Metabolismo dos Lipídeos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos Endogâmicos BALB C , Prostaglandinas/genética , Prostaglandinas/metabolismo , Transcriptoma
19.
Curr Opin Microbiol ; 26: 32-40, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25988701

RESUMO

Macrophages are cells of the immune system that mediate processes ranging from phagocytosis to tissue homeostasis. Leishmania has evolved ingenious ways to adapt to life in the macrophage. The GP63 metalloprotease, which disables key microbicidal pathways, has recently been found to disrupt processes ranging from antigen cross-presentation to nuclear pore dynamics. New studies have also revealed that Leishmania sabotages key metabolic and signaling pathways to fuel parasite growth. Leishmania has also been found to induce DNA methylation to turn off genes controlling microbicidal pathways. These novel findings highlight the multipronged attack employed by Leishmania to subvert macrophage function.


Assuntos
Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Leishmania/crescimento & desenvolvimento , Leishmania/imunologia , Macrófagos/imunologia , Macrófagos/parasitologia , Sobrevivência Celular
20.
Microbes Infect ; 17(4): 285-94, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25554486

RESUMO

Three adaptor molecules of the Dok family, Dok-1, Dok-2 and Dok-3 are expressed in macrophages and are involved in the negative regulation of signaling in response to lipopolysaccharide and various cytokines and growth factors. We investigated the role and the fate of these proteins following infection with Leishmania major promastigotes in macrophages. The protozoan parasite L. major causes cutaneous leishmaniasis and is known for its capacity to alter host-cell signaling and function. Dok-1/Dok-2(-/-) bone marrow-derived macrophages displayed normal uptake of L. major promastigotes. Following Leishmania infection, Dok-1 was barely detectable by confocal microscopy. By contrast, phagocytosis of latex beads or zymosan led to the recruitment of Dok-1 to phagosomes. In the absence of the Leishmania pathogenesis-associated metalloprotease GP63, Dok-1 was also, partially, recruited to phagosomes containing L. major promastigotes. Further biochemical analyses revealed that similar to Dok-1, Dok-2 and Dok-3 were targets of GP63. Moreover, we showed that upon infection with wild-type or Δgp63 L. major promastigotes, production of nitric oxide and tumor necrosis factor by interferon-γ-primed Dok-1/Dok-2(-/-) macrophages was reduced compared to WT macrophages. These results suggest that Dok proteins may be important regulators of macrophage responses to Leishmania infection.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas de Ligação a DNA/imunologia , Interações Hospedeiro-Parasita/imunologia , Metaloendopeptidases/imunologia , Fagocitose/imunologia , Fosfoproteínas/imunologia , Proteínas de Ligação a RNA/imunologia , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Animais , Proteínas de Ligação a DNA/biossíntese , Modelos Animais de Doenças , Leishmania major/citologia , Leishmania major/imunologia , Leishmania major/parasitologia , Camundongos , Fosfoproteínas/biossíntese , Proteínas de Ligação a RNA/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA