Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
bioRxiv ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38948811

RESUMO

Kidney tubular cells are submitted to two distinct mechanical forces generated by the urine flow: shear stress and hydrostatic pressure. In addition, the mechanical properties of the surrounding extracellular matrix modulate tubule deformation under constraints. These mechanical factors likely play a role in the pathophysiology of kidney diseases as exemplified by autosomal dominant polycystic kidney disease, in which pressure, flow and matrix stiffness have been proposed to modulate the cystic dilation of tubules with PKD1 mutations. The lack of in vitro systems recapitulating the mechanical environment of kidney tubules impedes our ability to dissect the role of these mechanical factors. Here we describe a perfused kidney-on-chip with tunable extracellular matrix mechanical properties and hydrodynamic constraints, that allows a decoupling of shear stress and flow. We used this system to dissect how these mechanical cues affect Pkd1 -/- tubule dilation. Our results show two distinct mechanisms leading to tubular dilation. For PCT cells (proximal tubule), overproliferation mechanically leads to tubular dilation, regardless of the mechanical context. For mIMCD-3 cells (collecting duct), tube dilation is associated with a squamous cell morphology but not with overproliferation and is highly sensitive to extracellular matrix properties and hydrodynamic constraints. Surprisingly, flow alone suppressed Pkd1 -/- mIMCD-3 tubule dilation observed in static conditions, while the addition of luminal pressure restored it. Our in vitro model emulating nephron geometrical and mechanical organization sheds light on the roles of mechanical constraints in ADPKD and demonstrates the importance of controlling intraluminal pressure in kidney tubule models.

2.
Cell Rep Med ; 5(5): 101549, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38703767

RESUMO

There is a compelling need for approaches to predict the efficacy of immunotherapy drugs. Tumor-on-chip technology exploits microfluidics to generate 3D cell co-cultures embedded in hydrogels that recapitulate simplified tumor ecosystems. Here, we present the development and validation of lung tumor-on-chip platforms to quickly and precisely measure ex vivo the effects of immune checkpoint inhibitors on T cell-mediated cancer cell death by exploiting the power of live imaging and advanced image analysis algorithms. The integration of autologous immunosuppressive FAP+ cancer-associated fibroblasts impaired the response to anti-PD-1, indicating that tumors-on-chips are capable of recapitulating stroma-dependent mechanisms of immunotherapy resistance. For a small cohort of non-small cell lung cancer patients, we generated personalized tumors-on-chips with their autologous primary cells isolated from fresh tumor samples, and we measured the responses to anti-PD-1 treatment. These results support the power of tumor-on-chip technology in immuno-oncology research and open a path to future clinical validations.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Medicina de Precisão , Receptor de Morte Celular Programada 1 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/imunologia , Medicina de Precisão/métodos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Dispositivos Lab-On-A-Chip , Imunoterapia/métodos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral
3.
Analyst ; 149(13): 3537-3546, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38758167

RESUMO

Single nucleotide variants (SNVs) play a crucial role in understanding genetic diseases, cancer development, and personalized medicine. However, existing ligase-based amplification and detection techniques, such as Rolling Circle Amplification and Ligase Detection Reaction, suffer from low efficiency and difficulties in product detection. To address these limitations, we propose a novel approach that combines Ligase Chain Reaction (LCR) with acoustic detection using highly dissipative liposomes. In our study, we are using LCR combined with biotin- and cholesterol-tagged primers to produce amplicons also modified at each end with a biotin and cholesterol molecule. We then apply the LCR mix without any purification directly on a neutravidin modified QCM device Au-surface, where the produced amplicons can bind specifically through the biotin end. To improve sensitivity, we finally introduce liposomes as signal enhancers. For demonstration, we used the detection of the BRAF V600E point mutation versus the wild-type allele, achieving an impressive detection limit of 220 aM of the mutant target in the presence of the same amount of the wild type. Finally, we combined the assay with a microfluidic fluidized bed DNA extraction technology, offering the potential for semi-automated detection of SNVs in patients' crude samples. Overall, our LCR/acoustic method outperforms other LCR-based approaches and surface ligation biosensing techniques in terms of detection efficiency and time. It effectively overcomes challenges related to DNA detection, making it applicable in diverse fields, including genetic disease and pathogen detection.


Assuntos
Reação em Cadeia da Ligase , Limite de Detecção , Lipossomos , Lipossomos/química , Humanos , Reação em Cadeia da Ligase/métodos , Proteínas Proto-Oncogênicas B-raf/genética , Polimorfismo de Nucleotídeo Único , Biotina/química , Acústica , Avidina/química , Técnicas de Microbalança de Cristal de Quartzo/métodos , Ouro/química , DNA/genética , DNA/química , Colesterol , Mutação Puntual
4.
Methods Mol Biol ; 2804: 65-75, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753140

RESUMO

In recent years, the analysis of circulating cell-free DNA (cfDNA) containing tumor-derived DNA has emerged as a noninvasive means for cancer monitoring and personalized medicine. However, the isolation of cfDNA from peripheral blood has remained a challenge due to the low abundance and high fragmentation of these molecules. Here, we present a dynamic Magnetic ExTRactiOn (METRO) protocol using microfluidic fluidized bed technology to isolate circulating cfDNA from raw biological materials such as undiluted serum. This protocol maximizes the surface area for DNA binding within the chip in order to capture short DNA fragments. It uses only a few µL of sample and reagents. The protocol can be automated, and it is fully compatible with sensitive DNA amplification methods such as droplet-based digital PCR (ddPCR).


Assuntos
Ácidos Nucleicos Livres , Dispositivos Lab-On-A-Chip , Humanos , Ácidos Nucleicos Livres/isolamento & purificação , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , Reação em Cadeia da Polimerase/métodos , Técnicas Analíticas Microfluídicas/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Magnetismo/métodos , Neoplasias/sangue , Neoplasias/genética , Neoplasias/diagnóstico
5.
Nat Commun ; 14(1): 6966, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37907483

RESUMO

During tumor progression, cancer-associated fibroblasts (CAFs) accumulate in tumors and produce an excessive extracellular matrix (ECM), forming a capsule that enwraps cancer cells. This capsule acts as a barrier that restricts tumor growth leading to the buildup of intratumoral pressure. Combining genetic and physical manipulations in vivo with microfabrication and force measurements in vitro, we found that the CAFs capsule is not a passive barrier but instead actively compresses cancer cells using actomyosin contractility. Abrogation of CAFs contractility in vivo leads to the dissipation of compressive forces and impairment of capsule formation. By mapping CAF force patterns in 3D, we show that compression is a CAF-intrinsic property independent of cancer cell growth. Supracellular coordination of CAFs is achieved through fibronectin cables that serve as scaffolds allowing force transmission. Cancer cells mechanosense CAF compression, resulting in an altered localization of the transcriptional regulator YAP and a decrease in proliferation. Our study unveils that the contractile capsule actively compresses cancer cells, modulates their mechanical signaling, and reorganizes tumor morphology.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Fibroblastos Associados a Câncer/patologia , Mecanotransdução Celular , Linhagem Celular Tumoral , Fibroblastos/patologia , Microambiente Tumoral , Neoplasias/patologia
6.
Anal Chem ; 95(49): 17988-17996, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38032406

RESUMO

The extraction and separation of cellular compounds are crucial steps in numerous biological protocols, particularly in multiomics studies, where several cellular modalities are examined simultaneously. While magnetic particle extraction is commonly used, it may not be applicable for ultralow input samples. Microfluidics has made possible the analysis of rare or low-materiality samples such as circulating tumor cells or single cells through miniaturization of numerous protocols. In this study, a microfluidics workflow for separating different cellular modalities from ultralow input samples is presented. This approach is based on magnetic tweezers technology, allowing the extraction and resuspension of magnetic particles between consecutive nanoliter droplets to perform multistep assays on small volumes. The ability to separate and recover mRNA and gDNA in samples containing less than 10 cells is demonstrated, achieving separation efficiency comparable to the one obtained with conventional pipetting but with a significantly lower amount of starting material, typically 1-2 orders of magnitude less.


Assuntos
Técnicas Analíticas Microfluídicas , Técnicas Analíticas Microfluídicas/métodos , Multiômica , Microfluídica/métodos , Bioensaio/métodos , Fluxo de Trabalho
7.
Microsyst Nanoeng ; 9: 109, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680311

RESUMO

Liquid biopsy, in particular circulating tumor DNA (ctDNA) analysis, has paved the way for a new noninvasive approach to cancer diagnosis, treatment selection and follow-up. As a crucial step in the analysis, the extraction of the genetic material from a complex matrix needs to meet specific requirements such as high specificity and low loss of target. Here, we developed a new generation of microfluidic fluidized beds (FBs) that enable the efficient extraction and preconcentration of specific ctDNA sequences from human serum with flow rates up to 15 µL/min. We first demonstrated that implementation of a vibration system inducing flow rate fluctuations combined with a mixture of different bead sizes significantly enhanced bead homogeneity, thereby increasing capture efficiency. Taking advantage of this new generation of high-throughput magnetic FBs, we then developed a new method to selectively capture a double-stranded (dsDNA) BRAF mutated DNA sequence in complex matrices such as patient serum. Finally, as proof of concept, ligation chain reaction (LCR) assays were performed to specifically amplify a mutated BRAF sequence, allowing the detection of concentrations as low as 6 × 104 copies/µL of the mutated DNA sequence in serum.

8.
Lab Chip ; 23(18): 3906-3935, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37592893

RESUMO

Over the past 15 years, the field of oncology research has witnessed significant progress in the development of new cell culture models, such as tumor-on-chip (ToC) systems. In this comprehensive overview, we present a multidisciplinary perspective by bringing together physicists, biologists, clinicians, and experts from pharmaceutical companies to highlight the current state of ToC research, its unique features, and the challenges it faces. To offer readers a clear and quantitative understanding of the ToC field, we conducted an extensive systematic analysis of more than 300 publications related to ToC from 2005 to 2022. ToC offer key advantages over other in vitro models by enabling precise control over various parameters. These parameters include the properties of the extracellular matrix, mechanical forces exerted on cells, the physico-chemical environment, cell composition, and the architecture of the tumor microenvironment. Such fine control allows ToC to closely replicate the complex microenvironment and interactions within tumors, facilitating the study of cancer progression and therapeutic responses in a highly representative manner. Importantly, by incorporating patient-derived cells or tumor xenografts, ToC models have demonstrated promising results in terms of clinical validation. We also examined the potential of ToC for pharmaceutical industries in which ToC adoption is expected to occur gradually. Looking ahead, given the high failure rate of clinical trials and the increasing emphasis on the 3Rs principles (replacement, reduction, refinement of animal experimentation), ToC models hold immense potential for cancer research. In the next decade, data generated from ToC models could potentially be employed for discovering new therapeutic targets, contributing to regulatory purposes, refining preclinical drug testing and reducing reliance on animal models.


Assuntos
Técnicas de Cultura de Células , Neoplasias , Humanos , Animais , Indústria Farmacêutica , Matriz Extracelular , Microambiente Tumoral , Neoplasias/tratamento farmacológico
9.
Lab Chip ; 22(22): 4443-4455, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36314259

RESUMO

In vitro cell cultures are most often performed in unphysiological hyperoxia since the oxygen partial pressure of conventional incubators is set at 141 mmHg (18.6%, close to ambient air oxygen 20.1%). This value is higher than human tissue oxygen levels, as the in vivo oxygen partial pressures range from 104 mmHg (lung alveoli) to 8 mmHg (skin epidermis). Importantly, under pathological conditions such as cancer, cells can experience oxygen pressure lower than the healthy tissue. Although hypoxic incubators can regulate gas oxygen, they do not take into account the dissolved oxygen concentration in the cell culture medium. In the context of organ on chip and micro-physiological system development, we present here a new system, called Oxalis (OXygen ALImentation System) that allows fine control of the dissolved oxygen level in the cell culture medium. Oxalis regulates simultaneously the gas composition and the inlet reservoir pressure by modulating the pneumatic valve opening. This dual regulation allows both the pressure driven liquid flowrate and the level of oxygen dissolved in the chip to be controlled independently. Oxalis offers unprecedented features such as an oxygen equilibration time lower than 3 minutes and an accuracy of 3 mmHg. These performances can be reached for chip perfusion flow as low as 1 µL min-1. This low flow rate allows the shear stress experienced by the cells in the chip to be accurately controlled. In addition, the system enables modulation of the pH in the cell culture medium through the modulation of CO2. The fine control and monitoring of both O2 and pH pave the way for new precise investigations on physiological and pathological biological processes. Using Oxalis in the context of tumor-on-chip, we demonstrate the capacity of the system to recapitulate hypoxia-induced gene expression, offering an innovative strategy for future studies on the role of hypoxia in malignant progression and drug resistance.


Assuntos
Neoplasias , Oxigênio , Humanos , Hipóxia , Técnicas de Cultura de Células , Perfusão
10.
Biosens Bioelectron ; 215: 114571, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35932554

RESUMO

Organ-on-chip and tumor-on-chip microfluidic cell cultures represent a fast-growing research field for modelling organ functions and diseases, for drug development, and for promising applications in personalized medicine. Still, one of the bottlenecks of this technology is the analysis of the huge amount of bio-images acquired in these dynamic 3D microenvironments, a task that we propose to achieve by exploiting the interdisciplinary contributions of computer science and electronic engineering. In this work, we apply this strategy to the study of oncolytic vaccinia virus (OVV), an emerging agent in cancer immunotherapy. Infection and killing of cancer cells by OVV were recapitulated and directly imaged in tumor-on-chip. By developing and applying appropriate image analysis strategies and advanced automatic algorithms, we uncovered synergistic cooperation of OVV and immune cells to kill cancer cells. Moreover, we observed that the kinetics of immune cells were modified in presence of OVV and that these immune modulations varied during the course of infection. A correlation between cancer cell infection and cancer-immune interaction time was pointed out, strongly supporting a cause-effect relationship between infection of cancer cells and their recognition by the immune cells. These results shed new light on the mode of action of OVV, and suggest new clinical avenues for immunotherapy developments.


Assuntos
Técnicas Biossensoriais , Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Microambiente Tumoral , Vaccinia virus
11.
Sci Rep ; 12(1): 9468, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676309

RESUMO

The cytokine interleukin 6 (IL-6) is involved in the pathogenesis of different inflammatory diseases, including cancer, and its monitoring could help diagnosis, prognosis of relapse-free survival and recurrence. Here, we report an innovative microfluidic approach that uses the fluidization of magnetic beads to specifically extract, preconcentrate and fluorescently detect IL-6 directly on-chip. We assess how the physical properties of the beads can be tuned to improve assay performance by enhancing mass transport, reduce non-specific binding and multiply the detection signal threefold by transitioning between packed and fluidization states. With the integration of a full ELISA protocol in a single microfluidic chamber, we show a twofold reduction in LOD compared to conventional methods along with a large dynamic range (10 pg/mL to 2 ng/mL). We additionally demonstrate its application to IL-6 detection in undiluted serum samples.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Biomarcadores , Citocinas , Interleucina-6 , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/métodos
12.
Cancers (Basel) ; 14(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35454795

RESUMO

Microfluidics has provided clinicians with new technologies to detect and analyze circulating tumor biomarkers in order to further improve their understanding of disease mechanism, as well as to improve patient management. Among these different biomarkers, circulating tumor cells have proven to be of high interest for different types of cancer and in particular for breast cancer. Here we focus our attention on a breast cancer subtype referred as HER2-positive breast cancer, this cancer being associated with an amplification of HER2 protein at the plasma membrane of cancer cells. Combined with therapies targeting the HER2 protein, HER2-HER3 dimerization blockade further improves a patient's outcome. In this work, we propose a new approach to CTC characterization by on-chip integrating proximity ligation assay, so that we can quantify the HER2-HER3 dimerization event at the level of single CTC. To achieve this, we developed a microfluidic approach combining both CTC capture, identification and HER2-HER3 status quantification by Proximity Ligation Assay (PLA). We first optimized and demonstrated the potential of the on-chip quantification of HER2-HER3 dimerization using cancer cell lines with various levels of HER2 overexpression and validated its clinical potential with a patient's sample treated or not with HER2-targeted therapy.

13.
Front Bioeng Biotechnol ; 9: 624553, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124016

RESUMO

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a major renal pathology provoked by the deletion of PKD1 or PKD2 genes leading to local renal tubule dilation followed by the formation of numerous cysts, ending up with renal failure in adulthood. In vivo, renal tubules are tightly packed, so that dilating tubules and expanding cysts may have mechanical influence on adjacent tubules. To decipher the role of this coupling between adjacent tubules, we developed a kidney-on-chip reproducing parallel networks of tightly packed tubes. This original microdevice is composed of cylindrical hollow tubes of physiological dimensions, parallel and closely packed with 100-200 µm spacing, embedded in a collagen I matrix. These multitubular systems were properly colonized by different types of renal cells with long-term survival, up to 2 months. While no significant tube dilation over time was observed with Madin-Darby Canine Kidney (MDCK) cells, wild-type mouse proximal tubule (PCT) cells, or with PCT Pkd1 +/- cells (with only one functional Pkd1 allele), we observed a typical 1.5-fold increase in tube diameter with isogenic PCT Pkd1 -/- cells, an ADPKD cellular model. This tube dilation was associated with an increased cell proliferation, as well as a decrease in F-actin stress fibers density along the tube axis. With this kidney-on-chip model, we also observed that for larger tube spacing, PCT Pkd1 -/- tube deformations were not spatially correlated with adjacent tubes whereas for shorter spacing, tube deformations were increased between adjacent tubes. Our device reveals the interplay between tightly packed renal tubes, constituting a pioneering tool well-adapted to further study kidney pathophysiology.

14.
Cancers (Basel) ; 13(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070171

RESUMO

To rationally improve targeted drug delivery to tumor cells, new methods combining in silico and physiologically relevant in vitro models are needed. This study combines mathematical modeling with 3D in vitro co-culture models to study the delivery of engineered proteins, called designed ankyrin repeat proteins (DARPins), in biomimetic tumor microenvironments containing fibroblasts and tumor cells overexpressing epithelial cell adhesion molecule (EpCAM) or human epithelial growth factor receptor (HER2). In multicellular tumor spheroids, we observed strong binding-site barriers in combination with low apparent diffusion coefficients of 1 µm2·s-1 and 2 µm2 ·s-1 for EpCAM- and HER2-binding DARPin, respectively. Contrasting this, in a tumor-on-a-chip model for investigating delivery in real-time, transport was characterized by hindered diffusion as a consequence of the lower local tumor cell density. Finally, simulations of the diffusion of an EpCAM-targeting DARPin fused to a fragment of Pseudomonas aeruginosa exotoxin A, which specifically kills tumor cells while leaving fibroblasts untouched, correctly predicted the need for concentrations of 10 nM or higher for extensive tumor cell killing on-chip, whereas in 2D models picomolar concentrations were sufficient. These results illustrate the power of combining in vitro models with mathematical modeling to study and predict the protein activity in complex 3D models.

15.
Pharmaceutics ; 13(4)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33921165

RESUMO

The ability to specifically block or degrade cytosolic targets using therapeutic proteins would bring tremendous therapeutic opportunities in cancer therapy. Over the last few years, significant progress has been made with respect to tissue targeting, cytosolic delivery, and catalytic inactivation of targets, placing this aim within reach. Here, we developed a mathematical model specifically built for the evaluation of approaches towards cytosolic protein delivery, involving all steps from systemic administration to translocation into the cytosol and target engagement. Focusing on solid cancer tissues, we utilized the model to investigate the effects of microvascular permeability, receptor affinity, the cellular density of targeted receptors, as well as the mode of activity (blocking/degradation) on therapeutic potential. Our analyses provide guidance for the rational optimization of protein design for enhanced activity and highlight the importance of tuning the receptor affinity as a function of receptor density as well as the receptor internalization rate. Furthermore, we provide quantitative insights into how enzymatic cargoes can enhance the distribution, extent, and duration of therapeutic activity, already at very low catalytic rates. Our results illustrate that with current protein engineering approaches, the goal of delivery of cytosolic delivery of proteins for therapeutic effects is well within reach.

16.
PLoS Comput Biol ; 17(3): e1008870, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33784299

RESUMO

The emerging tumor-on-chip (ToC) approaches allow to address biomedical questions out of reach with classical cell culture techniques: in biomimetic 3D hydrogels they partially reconstitute ex vivo the complexity of the tumor microenvironment and the cellular dynamics involving multiple cell types (cancer cells, immune cells, fibroblasts, etc.). However, a clear bottleneck is the extraction and interpretation of the rich biological information contained, sometime hidden, in the cell co-culture videos. In this work, we develop and apply novel video analysis algorithms to automatically measure the cytotoxic effects on human cancer cells (lung and breast) induced either by doxorubicin chemotherapy drug or by autologous tumor-infiltrating cytotoxic T lymphocytes (CTL). A live fluorescent dye (red) is used to selectively pre-stain the cancer cells before co-cultures and a live fluorescent reporter for caspase activity (green) is used to monitor apoptotic cell death. The here described open-source computational method, named STAMP (spatiotemporal apoptosis mapper), extracts the temporal kinetics and the spatial maps of cancer death, by localizing and tracking cancer cells in the red channel, and by counting the red to green transition signals, over 2-3 days. The robustness and versatility of the method is demonstrated by its application to different cell models and co-culture combinations. Noteworthy, this approach reveals the strong contribution of primary cancer-associated fibroblasts (CAFs) to breast cancer chemo-resistance, proving to be a powerful strategy to investigate intercellular cross-talks and drug resistance mechanisms. Moreover, we defined a new parameter, the 'potential of death induction', which is computed in time and in space to quantify the impact of dying cells on neighbor cells. We found that, contrary to natural death, cancer death induced by chemotherapy or by CTL is transmissible, in that it promotes the death of nearby cancer cells, suggesting the release of diffusible factors which amplify the initial cytotoxic stimulus.


Assuntos
Apoptose/fisiologia , Técnicas de Cocultura/métodos , Linfócitos T Citotóxicos , Microambiente Tumoral/fisiologia , Linhagem Celular Tumoral , Biologia Computacional , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos , Cinética , Técnicas Analíticas Microfluídicas , Microscopia de Vídeo , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/fisiologia
17.
Biomaterials ; 269: 120624, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33421710

RESUMO

Bone is the most frequent metastasis site for breast cancer. As well as dramatically increasing disease burden, bone metastases are also an indicator of poor prognosis. One of the main challenges in investigating bone metastasis in breast cancer is engineering in vitro models that replicate the features of in vivo bone environments. Such in vitro models ideally enable the biology of the metastatic cells to mimic their in vivo behavior as closely as possible. Here, taking benefit of cutting-edge technologies both in microfabrication and cancer cell biology, we have developed an in vitro breast cancer bone-metastasis model. To do so we first 3D printed a bone scaffold that reproduces the trabecular architecture and that can be conditioned with osteoblast-like cells, a collagen matrix, and mineralized calcium. We thus demonstrated that this device offers an adequate soil to seed primary breast cancer bone metastatic cells. In particular, patient-derived xenografts being considered as a better approach than cell lines to achieve clinically relevant results, we demonstrate the ability of this biomimetic bone niche model to host patient-derived xenografted metastatic breast cancer cells. These patient-derived xenograft cells show a long-term survival in the bone model and maintain their cycling propensity, and exhibit the same modulated drug response as in vivo. This experimental system enables access to the idiosyncratic features of the bone microenvironment and cancer bone metastasis, which has implications for drug testing.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Animais , Biomimética , Neoplasias Ósseas/patologia , Osso e Ossos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Humanos , Metástase Neoplásica/patologia , Osteoblastos/patologia , Microambiente Tumoral
18.
Lab Chip ; 21(2): 365-377, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33306083

RESUMO

Organoids are widely used as a model system to study gut pathophysiology; however, they fail to fully reproduce the complex, multi-component structure of the intestinal wall. We present here a new gut on chip model that allows the co-culture of primary epithelial and stromal cells. The device has the topography and dimensions of the mouse gut and is based on a 3D collagen I scaffold. The scaffold is coated with a thin layer of laminin to mimic the basement membrane. To maintain the scaffold structure while preserving its cytocompatibility, the collagen scaffold was rigidified by threose-based post-polymerization treatment. This treatment being cytocompatible enabled the incorporation of primary intestinal fibroblasts inside the scaffold, reproducing the gut stromal compartment. We observed that mouse organoids, when deposited into crypts, opened up and epithelialized the scaffold, generating a polarized epithelial monolayer. Proper segregation of dividing and differentiated cells along the crypt-villus axis was achieved under these conditions. Finally, we show that the application of fluid shear stress allows the long-term culture of this intestinal epithelium. Our device represents a new biomimetic tool that captures key features of the gut complexity and could be used to study gut pathophysiology.


Assuntos
Mucosa Intestinal , Intestinos , Animais , Comunicação Celular , Células Epiteliais , Fibroblastos , Camundongos
19.
Nat Commun ; 11(1): 404, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964880

RESUMO

Although fibroblast heterogeneity is recognized in primary tumors, both its characterization in and its impact on metastases remain unknown. Here, combining flow cytometry, immunohistochemistry and RNA-sequencing on breast cancer samples, we identify four Cancer-Associated Fibroblast (CAF) subpopulations in metastatic lymph nodes (LN). Two myofibroblastic subsets, CAF-S1 and CAF-S4, accumulate in LN and correlate with cancer cell invasion. By developing functional assays on primary cultures, we demonstrate that these subsets promote metastasis through distinct functions. While CAF-S1 stimulate cancer cell migration and initiate an epithelial-to-mesenchymal transition through CXCL12 and TGFß pathways, highly contractile CAF-S4 induce cancer cell invasion in 3-dimensions via NOTCH signaling. Patients with high levels of CAFs, particularly CAF-S4, in LN at diagnosis are prone to develop late distant metastases. Our findings suggest that CAF subset accumulation in LN is a prognostic marker, suggesting that CAF subsets could be examined in axillary LN at diagnosis.


Assuntos
Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/metabolismo , Metástase Linfática/patologia , Miofibroblastos/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Axila , Neoplasias da Mama/mortalidade , Neoplasias da Mama/terapia , Fibroblastos Associados a Câncer/patologia , Proliferação de Células , Separação Celular , Quimiocina CXCL12/metabolismo , Transição Epitelial-Mesenquimal , Feminino , Citometria de Fluxo , Seguimentos , Humanos , Estimativa de Kaplan-Meier , Linfonodos/citologia , Linfonodos/patologia , Pessoa de Meia-Idade , Miofibroblastos/patologia , Invasividade Neoplásica/patologia , Cultura Primária de Células , Prognóstico , Intervalo Livre de Progressão , Receptores Notch/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Células Tumorais Cultivadas , Microambiente Tumoral
20.
Hypertension ; 74(1): 145-153, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31079531

RESUMO

Preeclampsia is a hypertensive pregnancy disease associated with a massive increase in sFlt-1 (soluble form of the vascular endothelial growth factor 1) in the maternal circulation, responsible for angiogenic imbalance and endothelial dysfunction. Pilot studies suggest that extracorporeal apheresis may reduce circulating sFlt-1 and prolong pregnancy. Nonspecific apheresis systems have potential adverse effects because of the capture of many other molecules. Our concept is based on a specific and competitive apheresis approach using VEGF (vascular endothelial growth factor) functionalized magnetic beads to capture sFlt-1 while releasing endogenous PlGF (placental growth factor) to restore a physiological angiogenic balance. Magnetic beads were functionalized with VEGF to capture sFlt-1. Experiments were performed using PBS, conditioned media from human trophoblastic cells, and human plasma. The proof of concept was validated in dynamic conditions in a microfluidic device as an approach mimicking real apheresis. Magnetic beads were functionalized with VEGF and characterized to evaluate their surface ligand density and recognition capabilities. VEGF-coated magnetic beads proved to be an efficient support in capturing sFlt-1 and releasing PlGF. In static conditions, sFlt-1 concentration decreased by 33±13%, whereas PlGF concentration increased by 27±10%. In dynamic conditions, the performances were improved, with 40% reduction of sFlt-1 and up to 2-fold increase of free PlGF. The sFlt-1/PlGF ratio was reduced by 63% in the plasma of preeclamptic patients. Apheresis was also associated with VEGF release. A ligand-based approach using VEGF-coated beads is an effective approach to the capture of sFlt-1 and the release of endogenous PlGF. It offers new perspectives for the treatment of preeclampsia.


Assuntos
Dispositivos Lab-On-A-Chip , Pré-Eclâmpsia/terapia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Indutores da Angiogênese , Remoção de Componentes Sanguíneos/métodos , Velocidade do Fluxo Sanguíneo , Células Cultivadas , Feminino , Humanos , Técnicas In Vitro , Magnetismo/métodos , Projetos Piloto , Placenta/citologia , Pré-Eclâmpsia/patologia , Gravidez , Sensibilidade e Especificidade , Trofoblastos/citologia , Trofoblastos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA