Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(21): 4727-4737, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39014219

RESUMO

Reactive oxygen species (ROS) including the superoxide anion (O2•-) are typically studied in cell cultures using fluorescent dyes, which provide only discrete single-point measurements. These methods lack the capabilities for assessing O2•- kinetics and release in a quantitative manner over long monitoring times. Herein, we present the fabrication and application of an electrochemical biosensor that enables real-time continuous monitoring of O2•- release in cell cultures for extended periods (> 8 h) using an O2•- specific microelectrode. To achieve the sensitivity and selectivity requirements for cellular sensing, we developed a biohybrid system consisting of superoxide dismutase (SOD) and Ti3C2Tx MXenes, deposited on a gold microwire electrode (AuME) as O2•- specific materials with catalytic amplification through the synergistic action of the enzyme and the biomimetic MXenes-based structure. The biosensor demonstrated a sensitivity of 18.35 nA/µM with a linear range from 147 to 930 nM in a cell culture medium. To demonstrate its robustness and practicality, we applied the biosensor to monitor O2•- levels in human leukemia monocytic THP-1 cells upon stimulation with lipopolysaccharide (LPS). Using this strategy, we successfully monitored LPS-induced O2•- in THP-1 cells, as well as the quenching effect induced by the ROS scavenger N-acetyl-L-cysteine (NAC). The biosensor is generally useful for exploring the role of oxidative stress and longitudinally monitoring O2•- release in cell cultures, enabling studies of biochemical processes and associated oxidative stress mechanisms in cellular and other biological environments.


Assuntos
Técnicas Biossensoriais , Superóxido Dismutase , Superóxidos , Humanos , Superóxidos/metabolismo , Superóxidos/análise , Técnicas Biossensoriais/métodos , Superóxido Dismutase/metabolismo , Células THP-1 , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Lipopolissacarídeos/farmacologia , Limite de Detecção
2.
Biosens Bioelectron ; 240: 115664, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37689016

RESUMO

Oxidative stress and excessive accumulation of the superoxide (O2.-) anion are at the genesis of many pathological conditions and the onset of several diseases. The real time monitoring of (O2.-) release is important to assess the extent of oxidative stress in these conditions. Herein, we present the design, fabrication and characterization of a robust (O2.-) biosensor using a simple and straightforward procedure involving deposition of a uniform layer of L-Cysteine on a gold wire electrode to which Cytochrome C (Cyt c) was conjugated. The immobilized layers, studied using conductive Atomic Force Microscopy (c-AFM) revealed a stable and uniformly distributed redox protein on the gold surface, visualized as conductivity and surface topographical plots. The biosensor enabled detection of (O2.-) at an applied potential of 0.15 V with a sensitivity of 42.4 nA/µM and a detection limit of 2.4 nM. Utility of the biosensor was demonstrated in measurements of real time (O2.-) release in activated human blood platelets and skeletal rat limb muscles following ischemia reperfusion injury (IRI), confirming the biosensor's stability and robustness for measurements in complex biological systems. The results demonstrate the ability of these biosensors to monitor real time release of (O2.-) and estimate the extent of oxidative injury in models that could easily be translated to human pathologies.


Assuntos
Técnicas Biossensoriais , Citocromos c , Humanos , Animais , Ratos , Superóxidos , Plaquetas , Ouro , Músculo Esquelético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA