Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Cancer ; 3(9): 1088-1104, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36138131

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers. Characterization of genetic alterations will improve our understanding and therapies for this disease. Here, we report that PDAC with elevated expression of METTL16, one of the 'writers' of RNA N6-methyladenosine modification, may benefit from poly-(ADP-ribose)-polymerase inhibitor (PARPi) treatment. Mechanistically, METTL16 interacts with MRE11 through RNA and this interaction inhibits MRE11's exonuclease activity in a methyltransferase-independent manner, thereby repressing DNA end resection. Upon DNA damage, ATM phosphorylates METTL16 resulting in a conformational change and autoinhibition of its RNA binding. This dissociates the METTL16-RNA-MRE11 complex and releases inhibition of MRE11. Concordantly, PDAC cells with high METTL16 expression show increased sensitivity to PARPi, especially when combined with gemcitabine. Thus, our findings reveal a role for METTL16 in homologous recombination repair and suggest that a combination of PARPi with gemcitabine could be an effective treatment strategy for PDAC with elevated METTL16 expression.


Assuntos
Carcinoma Ductal Pancreático , Proteína Homóloga a MRE11 , Metiltransferases , Neoplasias Pancreáticas , Adenosina Difosfato Ribose , Carcinoma Ductal Pancreático/tratamento farmacológico , DNA , Exonucleases/genética , Humanos , Proteína Homóloga a MRE11/genética , Metiltransferases/genética , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/genética , RNA , Mutações Sintéticas Letais , Neoplasias Pancreáticas
2.
Nat Commun ; 11(1): 857, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32051414

RESUMO

Meiotic recombination is initiated by SPO11-induced double-strand breaks (DSBs). In most mammals, the methyltransferase PRDM9 guides SPO11 targeting, and the ATM kinase controls meiotic DSB numbers. Following MRE11 nuclease removal of SPO11, the DSB is resected and loaded with DMC1 filaments for homolog invasion. Here, we demonstrate the direct detection of meiotic DSBs and resection using END-seq on mouse spermatocytes with low sample input. We find that DMC1 limits both minimum and maximum resection lengths, whereas 53BP1, BRCA1 and EXO1 play surprisingly minimal roles. Through enzymatic modifications to END-seq, we identify a SPO11-bound meiotic recombination intermediate (SPO11-RI) present at all hotspots. We propose that SPO11-RI forms because chromatin-bound PRDM9 asymmetrically blocks MRE11 from releasing SPO11. In Atm-/- spermatocytes, trapped SPO11 cleavage complexes accumulate due to defective MRE11 initiation of resection. Thus, in addition to governing SPO11 breakage, ATM and PRDM9 are critical local regulators of mammalian SPO11 processing.


Assuntos
Endodesoxirribonucleases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Recombinação Homóloga/fisiologia , Meiose/fisiologia , Espermatócitos/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Feminino , Histona-Lisina N-Metiltransferase/genética , Proteína Homóloga a MRE11/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética
3.
Methods Mol Biol ; 2004: 269-287, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31147924

RESUMO

The Mre11-Rad50-Nbs1 (MRN) complex coordinates the repair of DNA double-strand breaks, replication fork restart, meiosis, class-switch recombination, and telomere maintenance. As such, MRN is an essential molecular machine that has homologs in all organisms of life, from bacteriophage to humans. In human cells, MRN is a >500 kDa multifunctional complex that encodes DNA binding, ATPase, and both endonuclease and exonuclease activities. MRN also forms larger assemblies and interacts with multiple DNA repair and replication factors. The enzymatic properties of MRN have been the subject of intense research for over 20 years, and more recently, single-molecule biophysics studies are beginning to probe its many biochemical activities. Here, we describe the methods used to overexpress, fluorescently label, and visualize MRN and its activities on single molecules of DNA.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína Homóloga a MRE11/metabolismo , Proteínas Nucleares/metabolismo , Adenosina Trifosfatases/metabolismo , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , Replicação do DNA/fisiologia , Humanos , Meiose/fisiologia
4.
Nucleic Acids Res ; 45(9): 5255-5268, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28369545

RESUMO

The Mre11-Rad50-Nbs1(Xrs2) (MRN/X) complex is critical for the repair and signaling of DNA double strand breaks. The catalytic core of MRN/X comprised of the Mre11 nuclease and Rad50 adenosine triphosphatase (ATPase) active sites dimerizes through association between the Rad50 ATPase catalytic domains and undergoes extensive conformational changes upon ATP binding. This ATP-bound 'closed' state promotes binding to DNA, tethering DNA ends and ATM activation, but prevents nucleolytic processing of DNA ends, while ATP hydrolysis is essential for Mre11 endonuclease activity at blocked DNA ends. Here we investigate the regulation of ATP hydrolysis as well as the interdependence of the two functional active sites. We find that double-stranded DNA stimulates ATP hydrolysis by hMRN over ∼20-fold in an end-dependent manner. Using catalytic site mutants to create Rad50 dimers with only one functional ATPase site, we find that both ATPase sites are required for the stimulation by DNA. MRN-mediated endonucleolytic cleavage of DNA at sites of protein adducts requires ATP hydrolysis at both sites, as does the stimulation of ATM kinase activity. These observations suggest that symmetrical engagement of the Rad50 catalytic head domains with ATP bound at both sites is important for MRN functions in eukaryotic cells.


Assuntos
Domínio Catalítico , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Hidrolases Anidrido Ácido , Trifosfato de Adenosina/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Humanos , Hidrólise , Complexos Multiproteicos/metabolismo , Ligação Proteica , Multimerização Proteica
5.
Mol Cell ; 64(3): 580-592, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27814490

RESUMO

The Mre11/Rad50/Nbs1 complex initiates double-strand break repair by homologous recombination (HR). Loss of Mre11 or its nuclease activity in mouse cells is known to cause genome aberrations and cellular senescence, although the molecular basis for this phenotype is not clear. To identify the origin of these defects, we characterized Mre11-deficient (MRE11-/-) and nuclease-deficient Mre11 (MRE11-/H129N) chicken DT40 and human lymphoblast cell lines. These cells exhibit increased spontaneous chromosomal DSBs and extreme sensitivity to topoisomerase 2 poisons. The defects in Mre11 compromise the repair of etoposide-induced Top2-DNA covalent complexes, and MRE11-/- and MRE11-/H129N cells accumulate high levels of Top2 covalent conjugates even in the absence of exogenous damage. We demonstrate that both the genome instability and mortality of MRE11-/- and MRE11-/H129N cells are significantly reversed by overexpression of Tdp2, an enzyme that eliminates covalent Top2 conjugates; thus, the essential role of Mre11 nuclease activity is likely to remove these lesions.


Assuntos
Antígenos de Neoplasias/genética , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/genética , DNA/genética , Proteínas Nucleares/genética , Reparo de DNA por Recombinação/efeitos dos fármacos , Fatores de Transcrição/genética , Hidrolases Anidrido Ácido , Animais , Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Galinhas , DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/metabolismo , Etoposídeo/farmacologia , Regulação da Expressão Gênica , Instabilidade Genômica/efeitos dos fármacos , Humanos , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Proteína Homóloga a MRE11 , Mutação , Proteínas Nucleares/metabolismo , Diester Fosfórico Hidrolases , Proteínas de Ligação a Poli-ADP-Ribose , Transdução de Sinais , Inibidores da Topoisomerase II/farmacologia , Fatores de Transcrição/metabolismo
7.
EMBO J ; 33(5): 482-500, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24493214

RESUMO

The Mre11-Rad50 complex is highly conserved, yet the mechanisms by which Rad50 ATP-driven states regulate the sensing, processing and signaling of DNA double-strand breaks are largely unknown. Here we design structure-based mutations in Pyrococcus furiosus Rad50 to alter protein core plasticity and residues undergoing ATP-driven movements within the catalytic domains. With this strategy we identify Rad50 separation-of-function mutants that either promote or destabilize the ATP-bound state. Crystal structures, X-ray scattering, biochemical assays, and functional analyses of mutant PfRad50 complexes show that the ATP-induced 'closed' conformation promotes DNA end binding and end tethering, while hydrolysis-induced opening is essential for DNA resection. Reducing the stability of the ATP-bound state impairs DNA repair and Tel1 (ATM) checkpoint signaling in Schizosaccharomyces pombe, double-strand break resection in Saccharomyces cerevisiae, and ATM activation by human Mre11-Rad50-Nbs1 in vitro, supporting the generality of the P. furiosus Rad50 structure-based mutational analyses. These collective results suggest that ATP-dependent Rad50 conformations switch the Mre11-Rad50 complex between DNA tethering, ATM signaling, and 5' strand resection, revealing molecular mechanisms regulating responses to DNA double-strand breaks.


Assuntos
Trifosfato de Adenosina/metabolismo , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Pyrococcus furiosus/metabolismo , Ciclo Celular , Cristalografia por Raios X , Análise Mutacional de DNA , Enzimas Reparadoras do DNA/genética , Hidrólise , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Conformação Proteica , Pyrococcus furiosus/genética , Pyrococcus furiosus/crescimento & desenvolvimento , Pyrococcus furiosus/fisiologia , Transdução de Sinais , Difração de Raios X
8.
J Biol Chem ; 288(18): 12840-51, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23525106

RESUMO

The Ataxia Telangiectasia-Mutated (ATM) protein kinase is recruited to sites of double-strand DNA breaks by the Mre11/Rad50/Nbs1 (MRN) complex, which also facilitates ATM monomerization and activation. MRN exists in at least two distinct conformational states, dependent on ATP binding and hydrolysis by the Rad50 protein. Here we use an ATP analog-sensitive form of ATM to determine that ATP binding, but not hydrolysis, by Rad50 is essential for MRN stimulation of ATM. Mre11 nuclease activity is dispensable, although some mutations in the Mre11 catalytic domain block ATM activation independent of nuclease function, as does the mirin compound. The coiled-coil domains of Rad50 are important for the DNA binding ability of MRN and are essential for ATM activation, but loss of the zinc hook connection can be substituted by higher levels of the complex. Nbs1 binds to the "closed" form of the MR complex, promoted by the zinc hook and by ATP binding. Thus the primary role of the hook is to tether Rad50 monomers together, promoting the association of the Rad50 catalytic domains into a form that binds ATP and also binds Nbs1. Collectively, these results show that the ATP-bound form of MRN is the critical conformation for ATM activation.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Hidrolases Anidrido Ácido , Trifosfato de Adenosina/genética , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Quebras de DNA de Cadeia Dupla , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Ativação Enzimática/genética , Células HEK293 , Humanos , Proteína Homóloga a MRE11 , Complexos Multiproteicos/genética , Mutação , Proteínas Nucleares/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Supressoras de Tumor/genética
9.
Cell Cycle ; 9(24): 4805-11, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21150274

RESUMO

The Ataxia-Telangiectasia mutated (ATM) kinase is regarded as the major regulator of the cellular response to DNA double strand breaks (DSBs). In response to DSBs, ATM dimers dissociate into active monomers in a process promoted by the Mre11-Rad50-Nbs1 (MRN) complex. ATM can also be activated by oxidative stress directly in the form of exposure to H2O2. The active ATM in this case is a disulfide-crosslinked dimer containing 2 or more disulfide bonds. Mutation of a critical cysteine residue in the FATC domain involved in disulfide bond formation specifically blocks ATM activation by oxidative stress. Here we show that ATM activation by DSBs is inhibited in the presence of H2O2 because oxidation blocks the ability of MRN to bind to DNA. However, ATM activation via direct oxidation by H2O2 complements the loss of MRN/DSB-dependent activation and contributes significantly to the overall level of ATM activity in the presence of both DSBs and oxidative stress.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Estresse Oxidativo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Sequência de Aminoácidos , Animais , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/classificação , Proteínas de Ciclo Celular/genética , Dano ao DNA , Proteínas de Ligação a DNA/classificação , Proteínas de Ligação a DNA/genética , Ativação Enzimática , Humanos , Dados de Sequência Molecular , Mutação , Filogenia , Proteínas Serina-Treonina Quinases/classificação , Proteínas Serina-Treonina Quinases/genética , Alinhamento de Sequência , Proteínas Supressoras de Tumor/classificação , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA