Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 12(1)2020 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396649

RESUMO

A deep understanding of the genetic control of drought tolerance and iron deficiency tolerance is essential to hasten the process of developing improved varieties with higher tolerance through genomics-assisted breeding. In this context, an improved genetic map with 1205 loci was developed spanning 2598.3 cM with an average 2.2 cM distance between loci in the recombinant inbred line (TAG 24 × ICGV 86031) population using high-density 58K single nucleotide polymorphism (SNP) "Axiom_Arachis" array. Quantitative trait locus (QTL) analysis was performed using extensive phenotyping data generated for 20 drought tolerance- and two iron deficiency tolerance-related traits from eight seasons (2004-2015) at two locations in India, one in Niger, and one in Senegal. The genome-wide QTL discovery analysis identified 19 major main-effect QTLs with 10.0-33.9% phenotypic variation explained (PVE) for drought tolerance- and iron deficiency tolerance- related traits. Major main-effect QTLs were detected for haulm weight (20.1% PVE), SCMR (soil plant analytical development (SPAD) chlorophyll meter reading, 22.4% PVE), and visual chlorosis rate (33.9% PVE). Several important candidate genes encoding glycosyl hydrolases; malate dehydrogenases; microtubule-associated proteins; and transcription factors such as MADS-box, basic helix-loop-helix (bHLH), NAM, ATAF, and CUC (NAC), and myeloblastosis (MYB) were identified underlying these QTL regions. The putative function of these genes indicated their possible involvement in plant growth, development of seed and pod, and photosynthesis under drought or iron deficiency conditions in groundnut. These genomic regions and candidate genes, after validation, may be useful to develop molecular markers for deploying genomics-assisted breeding for enhancing groundnut yield under drought stress and iron-deficient soil conditions.


Assuntos
Adaptação Fisiológica/genética , Arachis/genética , Mapeamento Cromossômico/métodos , Secas , Deficiências de Ferro , Proteínas de Plantas/genética , Característica Quantitativa Herdável , Arachis/crescimento & desenvolvimento , Arachis/metabolismo , Clorofila/biossíntese , Clorofila/genética , Cromossomos de Plantas/química , Cruzamentos Genéticos , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Índia , Anotação de Sequência Molecular , Níger , Fenótipo , Melhoramento Vegetal/métodos , Necrose e Clorose das Plantas/genética , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Senegal , Estresse Fisiológico/genética
2.
Toxins (Basel) ; 11(6)2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31163657

RESUMO

Aflatoxin is considered a "hidden poison" due to its slow and adverse effect on various biological pathways in humans, particularly among children, in whom it leads to delayed development, stunted growth, liver damage, and liver cancer. Unfortunately, the unpredictable behavior of the fungus as well as climatic conditions pose serious challenges in precise phenotyping, genetic prediction and genetic improvement, leaving the complete onus of preventing aflatoxin contamination in crops on post-harvest management. Equipping popular crop varieties with genetic resistance to aflatoxin is key to effective lowering of infection in farmer's fields. A combination of genetic resistance for in vitro seed colonization (IVSC), pre-harvest aflatoxin contamination (PAC) and aflatoxin production together with pre- and post-harvest management may provide a sustainable solution to aflatoxin contamination. In this context, modern "omics" approaches, including next-generation genomics technologies, can provide improved and decisive information and genetic solutions. Preventing contamination will not only drastically boost the consumption and trade of the crops and products across nations/regions, but more importantly, stave off deleterious health problems among consumers across the globe.


Assuntos
Aflatoxinas/análise , Arachis/microbiologia , Aspergillus , Resistência à Doença/genética , Contaminação de Alimentos/prevenção & controle , Aflatoxinas/toxicidade , Agricultura/métodos , Animais , Arachis/genética , Interações Hospedeiro-Patógeno , Humanos , Doenças das Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA