Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(6): e0060824, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38742909

RESUMO

Inositol tris/tetrakis phosphate kinases (IP3-4K) in the human fungal priority pathogens, Cryptococcus neoformans (CnArg1) and Candida albicans (CaIpk2), convey numerous virulence functions, yet it is not known whether the IP3-4K catalytic activity or a scaffolding role is responsible. We therefore generated a C. neoformans strain with a non-functional kinase, referred to as the dead-kinase (dk) CnArg1 strain (dkArg1). We verified that, although dkARG1 cDNA cloned from this strain produced a protein with the expected molecular weight, dkArg1 was catalytically inactive with no IP3-4K activity. Using recombinant CnArg1 and CaIpk2, we confirmed that, unlike the IP3-4K homologs in humans and Saccharomyces cerevisiae, CnArg1 and CaIpk2 do not phosphorylate the lipid-based substrate, phosphatidylinositol 4,5-bisphosphate, and therefore do not function as class I PI3Ks. Inositol polyphosphate profiling using capillary electrophoresis-electrospray ionization-mass spectrometry revealed that IP3 conversion is blocked in the dkArg1 and ARG1 deletion (Cnarg1Δ) strains and that 1-IP7 and a recently discovered isomer (4/6-IP7) are made by wild-type C. neoformans. Importantly, the dkArg1 and Cnarg1Δ strains had similar virulence defects, including suppressed growth at 37°C, melanization, capsule production, and phosphate starvation response, and were avirulent in an insect model, confirming that virulence is dependent on IP3-4K catalytic activity. Our data also implicate the dkArg1 scaffold in transcriptional regulation of arginine metabolism but via a different mechanism to S. cerevisiae since CnArg1 is dispensable for growth on different nitrogen sources. IP3-4K catalytic activity therefore plays a dominant role in fungal virulence, and IPK pathway function has diverged in fungal pathogens.IMPORTANCEThe World Health Organization has emphasized the urgent need for global action in tackling the high morbidity and mortality rates stemming from invasive fungal infections, which are exacerbated by the limited variety and compromised effectiveness of available drug classes. Fungal IP3-4K is a promising target for new therapy, as it is critical for promoting virulence of the human fungal priority pathogens, Cryptococcus neoformans and Candida albicans, and impacts numerous functions, including cell wall integrity. This contrasts to current therapies, which only target a single function. IP3-4K enzymes exert their effect through their inositol polyphosphate products or via the protein scaffold. Here, we confirm that the IP3-4K catalytic activity of CnArg1 promotes all virulence traits in C. neoformans that are attenuated by ARG1 deletion, reinforcing our ongoing efforts to find inositol polyphosphate effector proteins and to create inhibitors targeting the IP3-4K catalytic site, as a new antifungal drug class.


Assuntos
Cryptococcus neoformans , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidade , Cryptococcus neoformans/enzimologia , Virulência , Animais , Criptococose/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
2.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798512

RESUMO

Many genetic studies have established the kinase activity of inositol phosphate multikinase (IPMK) is required for the synthesis of higher-order inositol phosphate signaling molecules, the regulation of gene expression and control of the cell cycle. These genetic studies await orthogonal validation by specific IPMK inhibitors, but no such inhibitors have been synthesized. Here, we report complete chemical synthesis, cellular characterization, structure-activity relationships and rodent pharmacokinetics of a novel series of highly potent IPMK inhibitors. The first-generation compound 1 (UNC7437) decreased cellular proliferation and tritiated inositol phosphate levels in metabolically labeled human U251-MG glioblastoma cells. Compound 1 also regulated the transcriptome of these cells, selectively regulating genes that are enriched in cancer, inflammatory and viral infection pathways. Further optimization of compound 1 eventually led to compound 15 (UNC9750), which showed improved potency and pharmacokinetics in rodents. Compound 15 specifically inhibited cellular accumulation of InsP 5 , a direct product of IPMK kinase activity, while having no effect on InsP 6 levels, revealing a novel metabolic signature detected for the first time by rapid chemical attenuation of cellular IPMK activity. These studies designed, optimized and synthesized a new series of IPMK inhibitors, which reduces glioblastoma cell growth, induces a novel InsP 5 metabolic signature, and reveals novel aspects inositol phosphate cellular metabolism and signaling.

3.
mBio ; 14(2): e0355122, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37017534

RESUMO

Fungal pathogens uniquely regulate phosphate homeostasis via the cyclin-dependent kinase (CDK) signaling machinery of the phosphate acquisition (PHO) pathway (Pho85 kinase-Pho80 cyclin-CDK inhibitor Pho81), providing drug-targeting opportunities. Here, we investigate the impact of a PHO pathway activation-defective Cryptococcus neoformans mutant (pho81Δ) and a constitutively activated PHO pathway mutant (pho80Δ) on fungal virulence. Irrespective of phosphate availability, the PHO pathway was derepressed in pho80Δ with all phosphate acquisition pathways upregulated and much of the excess phosphate stored as polyphosphate (polyP). Elevated phosphate in pho80Δ coincided with elevated metal ions, metal stress sensitivity, and a muted calcineurin response, all of which were ameliorated by phosphate depletion. In contrast, metal ion homeostasis was largely unaffected in the pho81Δ mutant, and Pi, polyP, ATP, and energy metabolism were reduced, even under phosphate-replete conditions. A similar decline in polyP and ATP suggests that polyP supplies phosphate for energy production even when phosphate is available. Using calcineurin reporter strains in the wild-type, pho80Δ, and pho81Δ background, we also demonstrate that phosphate deprivation stimulates calcineurin activation, most likely by increasing the bioavailability of calcium. Finally, we show that blocking, as opposed to permanently activating, the PHO pathway reduced fungal virulence in mouse infection models to a greater extent and that this is most likely attributable to depleted phosphate stores and ATP, and compromised cellular bioenergetics, irrespective of phosphate availability. IMPORTANCE Invasive fungal diseases cause more than 1.5 million deaths per year, with an estimated 181,000 of these deaths attributable to Cryptococcal meningitis. Despite the high mortality, treatment options are limited. In contrast to humans, fungal cells maintain phosphate homeostasis via a CDK complex, providing drug-targeting opportunities. To investigate which CDK components are the best targets for potential antifungal therapy, we used strains with a constitutively active (pho80Δ) and an activation-defective (pho81Δ) PHO pathway, to investigate the impact of dysregulated phosphate homeostasis on cellular function and virulence. Our studies suggest that inhibiting the function of Pho81, which has no human homologue, would have the most detrimental impact on fungal growth in the host due to depletion of phosphate stores and ATP, irrespective of phosphate availability in the host.


Assuntos
Criptococose , Cryptococcus neoformans , Humanos , Animais , Camundongos , Quinases Ciclina-Dependentes/metabolismo , Calcineurina/genética , Calcineurina/metabolismo , Virulência , Criptococose/microbiologia , Polifosfatos , Metabolismo Energético , Trifosfato de Adenosina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
4.
Biomolecules ; 12(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36291735

RESUMO

New antifungals with unique modes of action are urgently needed to treat the increasing global burden of invasive fungal infections. The fungal inositol polyphosphate kinase (IPK) pathway, comprised of IPKs that convert IP3 to IP8, provides a promising new target due to its impact on multiple, critical cellular functions and, unlike in mammalian cells, its lack of redundancy. Nearly all IPKs in the fungal pathway are essential for virulence, with IP3-4 kinase (IP3-4K) the most critical. The dibenzylaminopurine compound, N2-(m-trifluorobenzylamino)-N6-(p-nitrobenzylamino)purine (TNP), is a commercially available inhibitor of mammalian IPKs. The ability of TNP to be adapted as an inhibitor of fungal IP3-4K has not been investigated. We purified IP3-4K from the human pathogens, Cryptococcus neoformans and Candida albicans, and optimised enzyme and surface plasmon resonance (SPR) assays to determine the half inhibitory concentration (IC50) and binding affinity (KD), respectively, of TNP and 38 analogues. A novel chemical route was developed to efficiently prepare TNP analogues. TNP and its analogues demonstrated inhibition of recombinant IP3-4K from C. neoformans (CnArg1) at low µM IC50s, but not IP3-4K from C. albicans (CaIpk2) and many analogues exhibited selectivity for CnArg1 over the human equivalent, HsIPMK. Our results provide a foundation for improving potency and selectivity of the TNP series for fungal IP3-4K.


Assuntos
Criptococose , Cryptococcus neoformans , Animais , Humanos , Virulência , Antifúngicos/química , Criptococose/tratamento farmacológico , Criptococose/microbiologia , Candida albicans , Inositol/metabolismo , Purinas/metabolismo , Mamíferos
5.
Cell Microbiol ; 23(6): e13325, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33721399

RESUMO

Inositol polyphosphates (IPs) and inositol pyrophosphates (PP-IPs) regulate diverse cellular processes in eukaryotic cells. IPs and PP-IPs are highly negatively charged and exert their biological effects by interacting with specific protein targets. Studies performed predominantly in mammalian cells and model yeasts have shown that IPs and PP-IPs modulate target function through allosteric regulation, by promoting intra- and intermolecular stabilization and, in the case of PP-IPs, by donating a phosphate from their pyrophosphate (PP) group to the target protein. Technological advances in genetics have extended studies of IP function to microbial pathogens and demonstrated that disrupting PP-IP biosynthesis and PP-IP-protein interaction has a profound impact on pathogenicity. This review summarises the complexity of IP-mediated regulation in eukaryotes, including microbial pathogens. It also highlights examples of poor conservation of IP-protein interaction outcome despite the presence of conserved IP-binding domains in eukaryotic proteomes.


Assuntos
Bactérias/patogenicidade , Células Eucarióticas/metabolismo , Inositol/metabolismo , Polifosfatos/metabolismo , Proteoma , Difosfatos/metabolismo , Humanos , Mapas de Interação de Proteínas , Virulência
6.
mBio ; 11(5)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082258

RESUMO

In the human-pathogenic fungus Cryptococcus neoformans, the inositol polyphosphate signaling pathway is critical for virulence. We recently demonstrated the key role of the inositol pyrophosphate IP7 (isomer 5-PP-IP5) in driving fungal virulence; however, the mechanism of action remains elusive. Using genetic and biochemical approaches, and mouse infection models, we show that IP7 synthesized by Kcs1 regulates fungal virulence by binding to a conserved lysine surface cluster in the SPX domain of Pho81. Pho81 is the cyclin-dependent kinase (CDK) inhibitor of the phosphate signaling (PHO) pathway. We also provide novel mechanistic insight into the role of IP7 in PHO pathway regulation by demonstrating that IP7 functions as an intermolecular "glue" to stabilize Pho81 association with Pho85/Pho80 and, hence, promote PHO pathway activation and phosphate acquisition. Blocking IP7-Pho81 interaction using site-directed mutagenesis led to a dramatic loss of fungal virulence in a mouse infection model, and the effect was similar to that observed following PHO81 gene deletion, highlighting the key importance of Pho81 in fungal virulence. Furthermore, our findings provide additional evidence of evolutionary divergence in PHO pathway regulation in fungi by demonstrating that IP7 isomers have evolved different roles in PHO pathway control in C. neoformans and nonpathogenic yeast.IMPORTANCE Invasive fungal diseases pose a serious threat to human health globally with >1.5 million deaths occurring annually, 180,000 of which are attributable to the AIDS-related pathogen, Cryptococcus neoformans Here, we demonstrate that interaction of the inositol pyrophosphate, IP7, with the CDK inhibitor protein, Pho81, is instrumental in promoting fungal virulence. IP7-Pho81 interaction stabilizes Pho81 association with other CDK complex components to promote PHO pathway activation and phosphate acquisition. Our data demonstrating that blocking IP7-Pho81 interaction or preventing Pho81 production leads to a dramatic loss in fungal virulence, coupled with Pho81 having no homologue in humans, highlights Pho81 function as a potential target for the development of urgently needed antifungal drugs.


Assuntos
Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidade , Fosfatos de Inositol/metabolismo , Pirofosfatases/metabolismo , Transdução de Sinais/genética , Animais , Feminino , Humanos , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Proteínas Repressoras/genética , Virulência/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-31380293

RESUMO

Invasive fungal pathogens cause more than 300 million serious human infections and 1.6 million deaths per year. A clearer understanding of the mechanisms by which these fungi cause disease is needed to identify novel targets for urgently needed therapies. Kinases are key components of the signaling and metabolic circuitry of eukaryotic cells, which include fungi, and kinase inhibition is currently being exploited for the treatment of human diseases. Inhibiting evolutionarily divergent kinases in fungal pathogens is a promising avenue for antifungal drug development. One such group of kinases is the phospholipase C1-dependent inositol polyphosphate kinases (IPKs), which act sequentially to transfer a phosphoryl group to a pre-phosphorylated inositol sugar (IP). This review focuses on the roles of fungal IPKs and their IP products in fungal pathogenicity, as determined predominantly from studies performed in the model fungal pathogen Cryptococcus neoformans, and compares them to what is known in non-pathogenic model fungi and mammalian cells to highlight potential drug targeting opportunities.


Assuntos
Antifúngicos/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Proteínas Fúngicas/antagonistas & inibidores , Fosfatos de Inositol/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fatores de Virulência/metabolismo , Animais , Criptococose/tratamento farmacológico , Criptococose/microbiologia , Criptococose/patologia , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/patogenicidade , Inibidores Enzimáticos/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Humanos , Inositol/metabolismo , Fosfatos de Inositol/metabolismo , Terapia de Alvo Molecular/métodos , Fosforilação/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Açúcares/metabolismo , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo , Virulência
8.
Mol Cell Proteomics ; 17(12): 2462-2479, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30206180

RESUMO

Hmt1p is the predominant arginine methyltransferase in Saccharomyces cerevisiae Its substrate proteins are involved in transcription, transcriptional regulation, nucleocytoplasmic transport and RNA splicing. Hmt1p-catalyzed methylation can also modulate protein-protein interactions. Hmt1p is conserved from unicellular eukaryotes through to mammals where its ortholog, PRMT1, is lethal upon knockout. In yeast, however, the effect of knockout on the transcriptome and proteome has not been described. Transcriptome analysis revealed downregulation of phosphate-responsive genes in hmt1Δ, including acid phosphatases PHO5, PHO11, and PHO12, phosphate transporters PHO84 and PHO89 and the vacuolar transporter chaperone VTC3 Analysis of the hmt1Δ proteome revealed decreased abundance of phosphate-associated proteins including phosphate transporter Pho84p, vacuolar alkaline phosphatase Pho8p, acid phosphatase Pho3p and subunits of the vacuolar transporter chaperone complex Vtc1p, Vtc3p and Vtc4p. Consistent with this, phosphate homeostasis was dysregulated in hmt1Δ cells, showing decreased extracellular phosphatase levels and decreased total Pi in phosphate-depleted medium. In vitro, we showed that transcription factor Pho4p can be methylated at Arg-241, which could explain phosphate dysregulation in hmt1Δ if interplay exists with phosphorylation at Ser-242 or Ser-243, or if Arg-241 methylation affects the capacity of Pho4p to homodimerize or interact with Pho2p. However, the Arg-241 methylation site was not validated in vivo and the localization of a Pho4p-GFP fusion in hmt1Δ was not different from wild type. To our knowledge, this is the first study to reveal an association between Hmt1p and phosphate homeostasis and one which suggests a regulatory link between S-adenosyl methionine and intracellular phosphate.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fosfatos/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Fosfatase Ácida/genética , Arginina/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Homeostase/genética , Metilação , Microscopia de Fluorescência , Proteoma/genética , Espectrometria de Massas em Tandem , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
9.
Am J Pathol ; 188(7): 1653-1665, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29929915

RESUMO

The innate immune system is the primary defense against cryptococcal infection, but paradoxically it promotes infection of the central nervous system. We performed a detailed longitudinal study of neurocryptococcosis in normal, chimeric, green fluorescent protein phagocyte-positive mice and phagocyte-depleted mice and interrogated the central nervous system innate immune response to Cryptococcus neoformans H99 using confocal microscopy, histology, flow cytometry, and quantification of brain cytokine/chemokines and fungal burdens. C. neoformans was present in the perivascular space (PVS) of post-capillary venules. This was associated with a massive influx of blood-derived monocytes, neutrophils, and T lymphocytes into the PVS and a predominantly proinflammatory cytokine/chemokine response. Phagocytes containing cryptococci were present only in the lumen and corresponding PVS of post-capillary venules. Free cryptococci were observed breaching the glia limitans, the protective barrier between the PVS and the cerebral parenchyma. Parenchymal cryptococcomas were typically in direct contact with post-capillary venules and lacked surrounding immune cell infiltrates. Phagocyte depletion abrogated cryptococcoma formation and PVS infiltrates. Together, these observations suggest that cryptococcomas can originate via phagocyte-dependent transport across post-capillary venular endothelium into the PVS and thence via passage of free cryptococci into the brain. In conclusion, we demonstrate for the first time that the PVS of cortical post-capillary venules is the major site of the early innate immune response to, and phagocyte-dependent entry of, C. neoformans.


Assuntos
Encéfalo/imunologia , Cryptococcus neoformans/imunologia , Imunidade Inata/imunologia , Meningite Criptocócica/imunologia , Fagócitos/imunologia , Linfócitos T/imunologia , Vênulas/imunologia , Animais , Encéfalo/microbiologia , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Meningite Criptocócica/microbiologia , Meningite Criptocócica/patologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos , Fagócitos/microbiologia , Fagócitos/patologia , Linfócitos T/microbiologia , Linfócitos T/patologia , Vênulas/microbiologia , Vênulas/patologia
10.
Virulence ; 8(8): 1833-1848, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-28976803

RESUMO

We previously identified a series of inositol polyphosphate kinases (IPKs), Arg1, Ipk1, Kcs1 and Asp1, in the opportunistic fungal pathogen Cryptococcus neoformans. Using gene deletion analysis, we characterized Arg1, Ipk1 and Kcs1 and showed that they act sequentially to convert IP3 to PP-IP5 (IP7), a key metabolite promoting stress tolerance, metabolic adaptation and fungal dissemination to the brain. We have now directly characterized the enzymatic activity of Arg1, demonstrating that it is a dual specificity (IP3/IP4) kinase producing IP5. We showed previously that IP5 is further phosphorylated by Ipk1 to produce IP6, which is a substrate for the synthesis of PP-IP5 by Kcs1. Phenotypic comparison of the arg1Δ and kcs1Δ deletion mutants (both PP-IP5-deficient) reveals that arg1Δ has the most deleterious phenotype: while PP-IP5 is essential for metabolic and stress adaptation in both mutant strains, PP-IP5 is dispensable for virulence-associated functions such as capsule production, cell wall organization, and normal N-linked mannosylation of the virulence factor, phospholipase B1, as these phenotypes were defective only in arg1Δ. The more deleterious arg1Δ phenotype correlated with a higher rate of arg1Δ phagocytosis by human peripheral blood monocytes and rapid arg1Δ clearance from lung in a mouse model. This observation is in contrast to kcs1Δ, which we previously reported establishes a chronic, confined lung infection. In summary, we show that Arg1 is the most crucial IPK for cryptococcal virulence, conveying PP-IP5-dependent and novel PP-IP5-independent functions.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Criptococose/microbiologia , Cryptococcus neoformans/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Proteínas de Bactérias/genética , Parede Celular/genética , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidade , Modelos Animais de Doenças , Feminino , Homeostase , Humanos , Fosfatos de Inositol/metabolismo , Cinética , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Virulência
11.
Sci Rep ; 6: 23927, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27033523

RESUMO

Fungal inositol polyphosphate (IP) kinases catalyse phosphorylation of IP3 to inositol pyrophosphate, PP-IP5/IP7, which is essential for virulence of Cryptococcus neoformans. Cryptococcal Kcs1 converts IP6 to PP-IP5/IP7, but the kinase converting IP5 to IP6 is unknown. Deletion of a putative IP5 kinase-encoding gene (IPK1) alone (ipk1Δ), and in combination with KCS1 (ipk1Δkcs1Δ), profoundly reduced virulence in mice. However, deletion of KCS1 and IPK1 had a greater impact on virulence attenuation than that of IPK1 alone. ipk1Δkcs1Δ and kcs1Δ lung burdens were also lower than those of ipk1Δ. Unlike ipk1Δ, ipk1Δkcs1Δ and kcs1Δ failed to disseminate to the brain. IP profiling confirmed Ipk1 as the major IP5 kinase in C. neoformans: ipk1Δ produced no IP6 or PP-IP5/IP7 and, in contrast to ipk1Δkcs1Δ, accumulated IP5 and its pyrophosphorylated PP-IP4 derivative. Kcs1 is therefore a dual specificity (IP5 and IP6) kinase producing PP-IP4 and PP-IP5/IP7. All mutants were similarly attenuated in virulence phenotypes including laccase, urease and growth under oxidative/nitrosative stress. Alternative carbon source utilisation was also reduced significantly in all mutants except ipk1Δ, suggesting that PP-IP4 partially compensates for absent PP-IP5/IP7 in ipk1Δ grown under this condition. In conclusion, PP-IP5/IP7, not IP6, is essential for fungal virulence.


Assuntos
Cryptococcus neoformans/enzimologia , Proteínas Fúngicas/fisiologia , Animais , Antifúngicos/farmacologia , Carbono/metabolismo , Criptococose/microbiologia , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidade , Meios de Cultura , Feminino , Proteínas Fúngicas/genética , Deleção de Genes , Técnicas de Inativação de Genes , Fosfatos de Inositol/biossíntese , Lacase/metabolismo , Melaninas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação , Ácido Fítico/biossíntese , Virulência
12.
J Fungi (Basel) ; 2(3)2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-29376941

RESUMO

Opportunistic fungi are a major cause of morbidity and mortality world-wide, particularly in immunocompromised individuals. Developing new treatments to combat invasive fungal disease is challenging given that fungal and mammalian host cells are eukaryotic, with similar organization and physiology. Even therapies targeting unique fungal cell features have limitations and drug resistance is emerging. New approaches to the development of antifungal drugs are therefore needed urgently. Cryptococcus neoformans, the commonest cause of fungal meningitis worldwide, is an accepted model for studying fungal pathogenicity and driving drug discovery. We recently characterized a phospholipase C (Plc1)-dependent pathway in C. neoformans comprising of sequentially-acting inositol polyphosphate kinases (IPK), which are involved in synthesizing inositol polyphosphates (IP). We also showed that the pathway is essential for fungal cellular function and pathogenicity. The IP products of the pathway are structurally diverse, each consisting of an inositol ring, with phosphate (P) and pyrophosphate (PP) groups covalently attached at different positions. This review focuses on (1) the characterization of the Plc1/IPK pathway in C. neoformans; (2) the identification of PP-IP5 (IP7) as the most crucial IP species for fungal fitness and virulence in a mouse model of fungal infection; and (3) why IPK enzymes represent suitable candidates for drug development.

13.
mBio ; 6(3): e00531-15, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26037119

RESUMO

UNLABELLED: Inositol pyrophosphates (PP-IPs) comprising inositol, phosphate, and pyrophosphate (PP) are essential for multiple functions in eukaryotes. Their role in fungal pathogens has never been addressed. Cryptococcus neoformans is a model pathogenic fungus causing life-threatening meningoencephalitis. We investigate the cryptococcal kinases responsible for the production of PP-IPs (IP7/IP8) and the hierarchy of PP-IP importance in pathogenicity. Using gene deletion and inositol polyphosphate profiling, we identified Kcs1 as the major IP6 kinase (producing IP7) and Asp1 as an IP7 kinase (producing IP8). We show that Kcs1-derived IP7 is the most crucial PP-IP for cryptococcal drug susceptibility and the production of virulence determinants. In particular, Kcs1 kinase activity is essential for cryptococcal infection of mouse lungs, as reduced fungal burdens were observed in the absence of Kcs1 or when Kcs1 was catalytically inactive. Transcriptome and carbon source utilization analysis suggested that compromised growth of the KCS1 deletion strain (Δkcs1 mutant) in the low-glucose environment of the host lung is due to its inability to utilize alternative carbon sources. Despite this metabolic defect, the Δkcs1 mutant established persistent, low-level asymptomatic pulmonary infection but failed to elicit a strong immune response in vivo and in vitro and was not readily phagocytosed by primary or immortalized monocytes. Reduced recognition of the Δkcs1 cells by monocytes correlated with reduced exposure of mannoproteins on the Δkcs1 mutant cell surface. We conclude that IP7 is essential for fungal metabolic adaptation to the host environment, immune recognition, and pathogenicity. IMPORTANCE: Cryptococcus neoformans is responsible for 1 million cases of AIDS-associated meningitis and ~600,000 deaths annually. Understanding cellular pathways responsible for pathogenicity might have an impact on new drug development. We characterized the inositol polyphosphate kinases Kcs1 and Asp1, which are predicted to catalyze the production of inositol pyrophosphates containing one or two diphosphate moieties (PP-IPs). Using gene deletion analysis and inositol polyphosphate profiling, we confirmed that Kcs1 and Asp1 are major IP6 and IP7 kinases, respectively. Kcs1-derived IP7, but not Asp1-derived IP8, is crucial for pathogenicity. Global expression profiling and carbon source utilization testing suggest that IP7-deficient cryptococci cannot adapt their metabolism to allow growth in the glucose-poor environment of the host lung, and consequently, fungal burdens are significantly reduced. Persistent asymptomatic Δkcs1 mutant infection correlated with decreased mannoprotein exposure on the Δkcs1 mutant surface and reduced phagocytosis. We conclude that IP7 is crucial for the metabolic adaptation of C. neoformans to the host environment and for pathogenicity.


Assuntos
Adaptação Fisiológica , Cryptococcus neoformans/crescimento & desenvolvimento , Cryptococcus neoformans/fisiologia , Difosfatos/metabolismo , Fosfatos de Inositol/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Animais , Criptococose/microbiologia , Criptococose/patologia , Cryptococcus neoformans/genética , Modelos Animais de Doenças , Deleção de Genes , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Virulência , Fatores de Virulência/metabolismo
14.
Infect Immun ; 81(4): 1245-55, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23381992

RESUMO

Phospholipase C (PLC) of Cryptococcus neoformans (CnPlc1) is crucial for virulence of this fungal pathogen. To investigate the mechanism of CnPlc1-mediated signaling, we established that phosphatidylinositol 4,5-bisphosphate (PIP(2)) is a major CnPlc1 substrate, which is hydrolyzed to produce inositol trisphosphate (IP(3)). In Saccharomyces cerevisiae, Plc1-derived IP(3) is a substrate for the inositol polyphosphate kinase Arg82, which converts IP(3) to more complex inositol polyphosphates. In this study, we show that in C. neoformans, the enzyme encoded by ARG1 is the major IP(3) kinase, and we further demonstrate that catalytic activity of Arg1 is essential for cellular homeostasis and virulence in the Galleria mellonella infection model. IP(3) content was reduced in the CnΔplc1 mutant and markedly increased in the CnΔarg1 mutant, while PIP(2) was increased in both mutants. The CnΔplc1 and CnΔarg1 mutants shared significant phenotypic similarity, including impaired thermotolerance, compromised cell walls, reduced capsule production and melanization, defective cell separation, and the inability to form mating filaments. In contrast to the S. cerevisiae ARG82 deletion mutant (ScΔarg82) strain, the CnΔarg1 mutant exhibited dramatically enlarged vacuoles indicative of excessive vacuolar fusion. In mammalian cells, PLC-derived IP(3) causes Ca(2+) release and calcineurin activation. Our data show that, unlike mammalian PLCs, CnPlc1 does not contribute significantly to calcineurin activation. Collectively, our findings provide the first evidence that the inositol polyphosphate anabolic pathway is essential for virulence of C. neoformans and further show that production of IP(3) as a precursor for synthesis of more complex inositol polyphosphates is the key biochemical function of CnPlc1.


Assuntos
Arginase/metabolismo , Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/patogenicidade , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas Quinases/metabolismo , Fosfolipases Tipo C/metabolismo , Fatores de Virulência/metabolismo , Animais , Deleção de Genes , Inositol 1,4,5-Trifosfato/metabolismo , Lepidópteros/microbiologia , Redes e Vias Metabólicas/genética , Modelos Animais , Transdução de Sinais , Análise de Sobrevida , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA