Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 10(8)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893835

RESUMO

Patients with inflammatory bowel disease (IBD) treated with anti-tumor-necrosis factor-alpha (TNFα) exhibited lower serologic responses one-month following the second dose of the COVID-19 BNT162b2 vaccine compared to those not treated with anti-TNFα (non-anti-TNFα) or to healthy controls (HCs). We comprehensively analyzed long-term humoral responses, including anti-spike (S) antibodies, serum inhibition, neutralization, cross-reactivity and circulating B cell six months post BNT162b2, in patients with IBD stratified by therapy compared to HCs. Subjects enrolled in a prospective, controlled, multi-center Israeli study received two BNT162b2 doses. Anti-S levels, functional activity, specific B cells, antigen cross-reactivity, anti-nucleocapsid levels, adverse events and IBD disease score were detected longitudinally. In total, 240 subjects, 151 with IBD (94 not treated with anti-TNFα and 57 treated with anti-TNFα) and 89 HCs participated. Six months after vaccination, patients with IBD treated with anti-TNFα had significantly impaired BNT162b2 responses, specifically, more seronegativity, decreased specific circulating B cells and cross-reactivity compared to patients untreated with anti-TNFα. Importantly, all seronegative subjects were patients with IBD; of those, >90% were treated with anti-TNFα. Finally, IBD activity was unaffected by BNT162b2. Altogether these data support the earlier booster dose administration in these patients.

2.
Front Pediatr ; 10: 859034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35656379

RESUMO

Cleft lip and/or cleft palate are a common group of birth defects that further classify into syndromic and non-syndromic forms. The syndromic forms are usually accompanied by additional physical or cognitive abnormalities. Isolated cleft palate syndromes are less common; however, they are associated with a variety of congenital malformations and generally have an underlying genetic etiology. A single report in 2019 described a novel syndrome in three individuals, characterized by cleft palate, developmental delay and proliferative retinopathy due to a homozygous non-sense mutation in the LRRC32 gene encoding glycoprotein A repetitions predominant (GARP), a cell surface polypeptide crucial for the processing and maturation of transforming growth factor ß (TGF-ß). We describe a patient who presented with cleft palate, prenatal and postnatal severe growth retardation, global developmental delay, dysmorphic facial features and progressive vitreoretinopathy. Whole exome sequencing (WES) revealed a very rare homozygous missense variant in the LRRC32 gene, which resulted in substitution of a highly conserved isoleucine to threonine. Protein modeling suggested this variant may negatively affect GARP function on latent TGF-ß activation. In summary, our report further expands the clinical features of cleft palate, proliferative retinopathy and developmental delay syndrome and emphasizes the association of LRRC32 pathogenic variants with this new syndrome.

3.
Gastroenterology ; 162(2): 454-467, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34717923

RESUMO

BACKGROUND & AIM: Patients with inflammatory bowel diseases (IBD), specifically those treated with anti-tumor necrosis factor (TNF)α biologics, are at high risk for vaccine-preventable infections. Their ability to mount adequate vaccine responses is unclear. The aim of the study was to assess serologic responses to messenger RNA-Coronavirus Disease 2019 vaccine, and safety profile, in patients with IBD stratified according to therapy, compared with healthy controls (HCs). METHODS: Prospective, controlled, multicenter Israeli study. Subjects enrolled received 2 BNT162b2 (Pfizer/BioNTech) doses. Anti-spike antibody levels and functional activity, anti-TNFα levels and adverse events (AEs) were detected longitudinally. RESULTS: Overall, 258 subjects: 185 IBD (67 treated with anti-TNFα, 118 non-anti-TNFα), and 73 HCs. After the first vaccine dose, all HCs were seropositive, whereas ∼7% of patients with IBD, regardless of treatment, remained seronegative. After the second dose, all subjects were seropositive, however anti-spike levels were significantly lower in anti-TNFα treated compared with non-anti-TNFα treated patients, and HCs (both P < .001). Neutralizing and inhibitory functions were both lower in anti-TNFα treated compared with non-anti-TNFα treated patients, and HCs (P < .03; P < .0001, respectively). Anti-TNFα drug levels and vaccine responses did not affect anti-spike levels. Infection rate (∼2%) and AEs were comparable in all groups. IBD activity was unaffected by BNT162b2. CONCLUSIONS: In this prospective study in patients with IBD stratified according to treatment, all patients mounted serologic response to 2 doses of BNT162b2; however, its magnitude was significantly lower in patients treated with anti-TNFα, regardless of administration timing and drug levels. Vaccine was safe. As vaccine serologic response longevity in this group may be limited, vaccine booster dose should be considered.


Assuntos
Vacina BNT162/imunologia , COVID-19/prevenção & controle , Imunogenicidade da Vacina/efeitos dos fármacos , Doenças Inflamatórias Intestinais/imunologia , Inibidores do Fator de Necrose Tumoral/imunologia , Adulto , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Estudos de Casos e Controles , Feminino , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Israel , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , SARS-CoV-2/imunologia
4.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 12): 604-608, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33263572

RESUMO

A fragment of the Trypanosoma brucei ZC3H41 protein encompassing the ATP-dependent RNA helicase domain was successfully subcloned for expression in a bacterial system (Escherichia coli). Following expression, the protein was purified and crystallized using the vapor-diffusion method. The protein crystals were optimized at a 1:1 protein:reservoir solution ratio using PPGBA 2000. The optimized crystals diffracted to a dmin of 3.15 Å. The collected data revealed preliminary structural information regarding this newly discovered protein.


Assuntos
Proteínas de Protozoários/química , Trypanosoma brucei brucei/química , Trifosfato de Adenosina/metabolismo , Cristalização , Cristalografia por Raios X , Domínios Proteicos , Proteínas de Protozoários/isolamento & purificação , Proteínas de Protozoários/metabolismo , RNA Helicases/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
5.
PLoS Pathog ; 12(10): e1005948, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27783673

RESUMO

Hantaviruses are important emerging human pathogens and are the causative agents of serious diseases in humans with high mortality rates. Like other members in the Bunyaviridae family their M segment encodes two glycoproteins, GN and GC, which are responsible for the early events of infection. Hantaviruses deliver their tripartite genome into the cytoplasm by fusion of the viral and endosomal membranes in response to the reduced pH of the endosome. Unlike phleboviruses (e.g. Rift valley fever virus), that have an icosahedral glycoprotein envelope, hantaviruses display a pleomorphic virion morphology as GN and GC assemble into spikes with apparent four-fold symmetry organized in a grid-like pattern on the viral membrane. Here we present the crystal structure of glycoprotein C (GC) from Puumala virus (PUUV), a representative member of the Hantavirus genus. The crystal structure shows GC as the membrane fusion effector of PUUV and it presents a class II membrane fusion protein fold. Furthermore, GC was crystallized in its post-fusion trimeric conformation that until now had been observed only in Flavi- and Togaviridae family members. The PUUV GC structure together with our functional data provides intriguing evolutionary and mechanistic insights into class II membrane fusion proteins and reveals new targets for membrane fusion inhibitors against these important pathogens.


Assuntos
Virus Puumala/química , Proteínas do Envelope Viral/química , Animais , Chlorocebus aethiops , Cristalografia por Raios X , Conformação Molecular , Conformação Proteica , Células Vero
6.
Proc Natl Acad Sci U S A ; 110(5): 1696-701, 2013 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23319635

RESUMO

Rift Valley fever virus (RVFV), like many other Bunyaviridae family members, is an emerging human and animal pathogen. Bunyaviruses have an outer lipid envelope bearing two glycoproteins, G(N) and G(C), required for cell entry. Bunyaviruses deliver their genome into the host-cell cytoplasm by fusing their envelope with an endosomal membrane. The molecular mechanism of this key entry step is unknown. The crystal structure of RVFV G(C) reveals a class II fusion protein architecture found previously in flaviviruses and alphaviruses. The structure identifies G(C) as the effector of membrane fusion and provides a direct view of the membrane anchor that initiates fusion. A structure of nonglycosylated G(C) reveals an extended conformation that may represent a fusion intermediate. Unanticipated similarities between G(C) and flavivirus envelope proteins reveal an evolutionary link between the two virus families and provide insights into the organization of G(C) in the outer shell of RVFV.


Assuntos
Glicoproteínas de Membrana/química , Estrutura Terciária de Proteína , Vírus da Febre do Vale do Rift/metabolismo , Proteínas do Envelope Viral/química , Aminoácidos/química , Animais , Cristalografia por Raios X , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Vírus da Febre do Vale do Rift/genética , Células Sf9 , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
7.
J Virol ; 83(9): 4338-44, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19244332

RESUMO

Dengue virus relies on a conformational change in its envelope protein, E, to fuse the viral lipid membrane with the endosomal membrane and thereby deliver the viral genome into the cytosol. We have determined the crystal structure of a soluble fragment E (sE) of dengue virus type 1 (DEN-1). The protein is in the postfusion conformation even though it was not exposed to a lipid membrane or detergent. At the domain I-domain III interface, 4 polar residues form a tight cluster that is absent in other flaviviral postfusion structures. Two of these residues, His-282 and His-317, are conserved in flaviviruses and are part of the "pH sensor" that triggers the fusogenic conformational change in E, at the reduced pH of the endosome. In the fusion loop, Phe-108 adopts a distinct conformation, forming additional trimer contacts and filling the bowl-shaped concavity observed at the tip of the DEN-2 sE trimer.


Assuntos
Vírus da Dengue/química , Vírus da Dengue/metabolismo , Fusão de Membrana , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Ligação Viral , Internalização do Vírus , Animais , Linhagem Celular , Cristalografia por Raios X , Vírus da Dengue/classificação , Vírus da Dengue/genética , Drosophila melanogaster , Modelos Moleculares , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA