Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Int J Radiat Oncol Biol Phys ; 64(2): 435-48, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16198064

RESUMO

PURPOSE: Target delineation using only CT information introduces large geometric uncertainties in radiotherapy for lung cancer. Therefore, a reduction of the delineation variability is needed. The impact of including a matched CT scan with 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) and adaptation of the delineation protocol and software on target delineation in lung cancer was evaluated in an extensive multi-institutional setting and compared with the delineations using CT only. METHODS AND MATERIALS: The study was separated into two phases. For the first phase, 11 radiation oncologists (observers) delineated the gross tumor volume (GTV), including the pathologic lymph nodes of 22 lung cancer patients (Stages I-IIIB) on CT only. For the second phase (1 year later), the same radiation oncologists delineated the GTV of the same 22 patients on a matched CT-FDG-PET scan using an adapted delineation protocol and software (according to the results of the first phase). All delineated volumes were analyzed in detail. The observer variation was computed in three dimensions by measuring the distance between the median GTV surface and each individual GTV. The variation in distance of all radiation oncologists was expressed as a standard deviation. The observer variation was evaluated for anatomic regions (lung, mediastinum, chest wall, atelectasis, and lymph nodes) and interpretation regions (agreement and disagreement; i.e., >80% vs. <80% of the radiation oncologists delineated the same structure, respectively). All radiation oncologist-computer interactions were recorded and analyzed with a tool called "Big Brother." RESULTS: The overall three-dimensional observer variation was reduced from 1.0 cm (SD) for the first phase (CT only) to 0.4 cm (SD) for the second phase (matched CT-FDG-PET). The largest reduction in the observer variation was seen in the atelectasis region (SD 1.9 cm reduced to 0.5 cm). The mean ratio between the common and encompassing volume was 0.17 and 0.29 for the first and second phases, respectively. For the first phase, the common volume was 0 in 4 patients (i.e., no common point for all GTVs). In the second phase, the common volume was always >0. For all anatomic regions, the interpretation differences among the radiation oncologists were reduced. The amount of disagreement was 45% and 18% for the first and second phase, respectively. Furthermore, the mean delineation time (12 vs. 16 min, p<0.001) and mean number of corrections (25 vs. 39, p<0.001) were reduced in the second phase compared with the first phase. CONCLUSION: For high-precision radiotherapy, the delineation of lung target volumes using only CT introduces too great a variability among radiation oncologists. Implementing matched CT-FDG-PET and adapted delineation protocol and software reduced observer variation in lung cancer delineation significantly with respect to CT only. However, the remaining observer variation was still large compared with other geometric uncertainties (setup variation and organ motion).


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Variações Dependentes do Observador , Tomografia Computadorizada de Emissão/métodos , Tomografia Computadorizada por Raios X/métodos , Idoso , Idoso de 80 Anos ou mais , Diagnóstico por Computador , Feminino , Fluordesoxiglucose F18/uso terapêutico , Humanos , Pulmão/diagnóstico por imagem , Linfonodos/diagnóstico por imagem , Masculino , Mediastino/diagnóstico por imagem , Pessoa de Meia-Idade , Compostos Radiofarmacêuticos/uso terapêutico , Parede Torácica/diagnóstico por imagem
2.
Radiother Oncol ; 77(2): 182-90, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16256231

RESUMO

BACKGROUND AND PURPOSE: To evaluate the process of target volume delineation in lung cancer for optimization of imaging, delineation protocol and delineation software. PATIENTS AND METHODS: Eleven radiation oncologists (observers) from five different institutions delineated the Gross Tumor Volume (GTV) including positive lymph nodes of 22 lung cancer patients (stages I-IIIB) on CT only. All radiation oncologist-computer interactions were recorded with a tool called 'Big Brother'. For each radiation oncologist and patient the following issues were analyzed: delineation time, number of delineated points and corrections, zoom levels, level and window (L/W) settings, CT slice changes, use of side windows (coronal and sagittal) and software button use. RESULTS: The mean delineation time per GTV was 16 min (SD 10 min). The mean delineation time for lymph node positive patients was on average 3 min larger (P = 0.02) than for lymph node negative patients. Many corrections (55%) were due to L/W change (e.g. delineating in mediastinum L/W and then correcting in lung L/W). For the lymph node region, a relatively large number of corrections was found (3.7 corr/cm2), indicating that it was difficult to delineate lymph nodes. For the tumor-atelectasis region, a relative small number of corrections was found (1.0 corr/cm2), indicating that including or excluding atelectasis into the GTV was a clinical decision. Inappropriate use of L/W settings was frequently found (e.g. 46% of all delineated points in the tumor-lung region were delineated in mediastinum L/W settings). Despite a large observer variation in cranial and caudal direction of 0.72 cm (1 SD), the coronal and sagittal side windows were not used in 45 and 60% of the cases, respectively. For the more difficult cases, observer variation was smaller when the coronal and sagittal side windows were used. CONCLUSIONS: With the 'Big Brother' tool a method was developed to trace the delineation process. The differences between observers concerning the delineation style were large. This study led to recommendations on how to improve delineation accuracy by adapting the delineation protocol (guidelines for L/W use) and delineation software (double window with lung and mediastinum L/W settings at the same time, enforced use of coronal and sagittal views) and including FDG-PET information (lymph nodes and atelectasis).


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/radioterapia , Planejamento da Radioterapia Assistida por Computador/instrumentação , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/patologia , Estudos de Coortes , Relação Dose-Resposta à Radiação , Desenho de Equipamento , Segurança de Equipamentos , Estudos de Avaliação como Assunto , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Variações Dependentes do Observador , Padrões de Prática Médica , Radioterapia (Especialidade)/normas , Radioterapia (Especialidade)/tendências , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Medição de Risco , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X , Resultado do Tratamento
3.
Int J Radiat Oncol Biol Phys ; 61(1): 228-38, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15629616

RESUMO

PURPOSE: The prostate is known to translate and rotate under influence of rectal filling changes and many studies have addressed the magnitude of these motions. However, prostate shape variations also have been reported. For image-guided radiotherapy, it is essential to know the relative magnitude of translations, rotations, and shape variation so that the most appropriate correction strategy can be chosen. However, no quantitative analysis of shape variation has been performed. It is, therefore, the purpose of this article to develop a method to determine shape variation of complex organs and apply it to determine shape variation during external beam radiotherapy of a GTV (gross tumor volume) consisting of prostate and seminal vesicles. METHODS AND MATERIALS: For this study, the data of 19 patients with prostate cancer were used. Each patient received a planning computed tomography (CT) scan and 8-12 (11 on average) repeat CT scans that were made during the course of conformal radiotherapy. One observer delineated the GTV in all scans, and volume variations were measured. After matching the GTVs for each patient for translation and rotation, a coverage probability matrix was constructed and the 50% isosurface was taken to determine the average GTV surface. Perpendicular distances between the average GTV and the individual GTVs were calculated for each point of the average GTV, and their variation was expressed in terms of local standard deviation (SD). The local SDs of the shape variation of all 19 patients were mapped onto a reference case by matching and morphing of the individual average GTVs. Repeated delineation of the GTV was done for 6 patients to determine intraobserver variation. Finally, the measured shape variation was corrected for intraobserver variation to estimate the "real" shape variation. RESULTS: No significant variations in GTV volume were observed. The measured shape variation (including delineation variation) was largest at the tip of the vesicles (SD = 2.0 mm), smallest at the left and right side of the prostate (SD = 1.0 mm), and average elsewhere (SD = 1.5 mm). At the left, right, and cranial sides of the prostate, the intraobserver variation was of the same order of magnitude as the measured shape variation; elsewhere it was smaller. However, the accuracy of the estimated SD for intraobserver variation was about half of the accuracy of the estimated SD for the measured shape variation, giving an overall uncertainty of maximum 0.6 mm SD in the estimate of the "real" shape variation. The "real" shape variation was small at the left, right, and cranial side of the prostate (SD <0.5 mm) and between 0.5 mm and 1.6 mm elsewhere. CONCLUSIONS: We developed a method to quantify shape variation of organs with a complex shape and applied it to a GTV consisting of prostate and seminal vesicles. Deformation of prostate and seminal vesicles during the course of radiotherapy is small (relative to organ motion). Therefore, it is a valid approximation in image-guided radiotherapy of prostate cancer, in first order, to correct only for setup errors and organ motion. Prostate and seminal vesicles deformation can be considered as a second-order effect.


Assuntos
Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Radioterapia Conformacional , Glândulas Seminais/diagnóstico por imagem , Humanos , Masculino , Movimento , Estudos Prospectivos , Próstata/patologia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/radioterapia , Radiografia , Rotação , Glândulas Seminais/patologia
4.
Int J Radiat Oncol Biol Phys ; 57(5): 1269-79, 2003 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-14630261

RESUMO

PURPOSE: The prostate volume delineated on MRI is smaller than on CT. The purpose of this study was to determine the influence of MRI- vs. CT-based prostate delineation using multiple observers on the dose to the target and organs at risk during external beam radiotherapy. MATERIALS AND METHODS: CT and MRI scans of the pelvic region were made of 18 patients and matched three-dimensionally on the bony anatomy. Three observers delineated the prostate using both modalities. A fourth observer delineated the rectal wall and the bulb of the penis. The planning treatment volume (PTV) was generated from the delineated prostates with a margin of 10 mm in three-dimensions. A three-field treatment plan with a prescribed dose of 78 Gy to the International Commission on Radiation Units and Measurements point was automatically generated from each PTV. Dose-volume histograms were calculated of all PTVs, rectal walls, and penile bulbs. The equivalent uniform dose was calculated for the rectal wall using a volume exponent (n = 0.12). RESULTS: The equivalent uniform dose of the CT rectal wall in plans based on the CT-delineated prostate was, on average, 5.1 Gy (SEM 0.5) greater than in the plans based on the MRI-delineated prostate. For the MRI rectal wall, this difference was 3.6 Gy (SEM 0.4). Allowing for the same equivalent uniform dose to the CT rectal wall, the prescribed dose to the PTV could be raised from 78 to 85 Gy when using the MRI-delineated prostate for treatment planning. The mean dose to the bulb of the penis was 11.6 Gy (SEM 1.8) lower for plans based on the MRI-delineated prostate. The mean coverage (volume of the PTV receiving > or =95% of the prescribed dose) was 99.9% for both modalities. The interobserver coverage (coverage of the PTV by a treatment plan designed for the PTV delineated by another observer in the same modality) was 97% for both modalities. The MRI rectum was significantly more ventrally localized than the CT rectum, probably because of the rounded tabletop and no knee support on the MRI scanner. CONCLUSIONS: The dose delivered to the rectal wall and bulb of the penis is significantly reduced with treatment plans based on the MRI-delineated prostate compared with the CT-delineated prostate, allowing a dose escalation of 2.0-7.0 Gy for the same rectal wall dose. The interobserver coverage was the same for CT and MRI delineation of the prostate. A statistically significant difference in position between the CT- and MRI-delineated rectum was observed, probably owing to a different tabletop and use of knee support.


Assuntos
Imageamento por Ressonância Magnética , Pênis , Próstata/diagnóstico por imagem , Próstata/patologia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Doses de Radiação , Reto , Tomografia Computadorizada por Raios X , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA