Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 2940, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011995

RESUMO

Resistance to endocrine treatment occurs in ~30% of ER+ breast cancer patients resulting in ~40,000 deaths/year in the USA. Preclinical studies strongly implicate activation of growth factor receptor, HER2 in endocrine treatment resistance. However, clinical trials of pan-HER inhibitors in ER+/HER2- patients have disappointed, likely due to a lack of predictive biomarkers. Here we demonstrate that loss of mismatch repair activates HER2 after endocrine treatment in ER+/HER2- breast cancer cells by protecting HER2 from protein trafficking. Additionally, HER2 activation is indispensable for endocrine treatment resistance in MutL- cells. Consequently, inhibiting HER2 restores sensitivity to endocrine treatment. Patient data from multiple clinical datasets supports an association between MutL loss, HER2 upregulation, and sensitivity to HER inhibitors in ER+/HER2- patients. These results provide strong rationale for MutL loss as a first-in-class predictive marker of sensitivity to combinatorial treatment with endocrine intervention and HER inhibitors in endocrine treatment-resistant ER+/HER2- breast cancer patients.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Reparo de Erro de Pareamento de DNA , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/metabolismo , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Reparo de Erro de Pareamento de DNA/efeitos dos fármacos , Reparo de Erro de Pareamento de DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Camundongos SCID , Proteína 1 Homóloga a MutL/genética , Proteína 1 Homóloga a MutL/metabolismo , Proteínas MutL/genética , Proteínas MutL/metabolismo , Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor ErbB-2/genética , Receptores de Estrogênio/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Oncogene ; 39(40): 6387-6392, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32820250

RESUMO

After publication of this Article, the Authors noticed errors in some of the Figures. In Figures 2e, 2f-g, 4a, 4j, 5a and 6b, unmatched ß-actin was inadvertently used as loading control for the immunoblots. These have been corrected using repeat data from a similar set of samples and the revised Figures containing matched ß-actin and their respective quantification data are included below. In Figure 7a, the same image was inadvertently used to represent tumors 3 and 5 in the control group. This error has been corrected using original images of tumors 3 and 5 in the control group. Additional corrections have been made in the Article and Figure legends to enhance the clarity of the description. NAD was replaced by NADP. NAD/NADP was replaced by NADP/NADPH. The description of the antibody source and dilution for the antigens PFKFB4 (Abcam, 1:1000), G6PD, and HK1 (Cell Signaling, 1:1,000) have been included in the Methods section for Western Blot. The legend for Figure 4e and 4j has been updated. The HTML and PDF versions of this Article have been corrected. The scientific conclusions of this paper have not been affected.

3.
Oncogene ; 39(40): 6265-6285, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31383940

RESUMO

Advanced Bladder Cancer (BLCA) remains a clinical challenge that lacks effective therapeutic measures. Here, we show that distinct, stage-wise metabolic alterations in BLCA are associated with the loss of function of aldehyde oxidase (AOX1). AOX1 associated metabolites have a high predictive value for advanced BLCA and our findings demonstrate that AOX1 is epigenetically silenced during BLCA progression by the methyltransferase activity of EZH2. Knockdown (KD) of AOX1 in normal bladder epithelial cells re-wires the tryptophan-kynurenine pathway resulting in elevated NADP levels which may increase metabolic flux through the pentose phosphate (PPP) pathway, enabling increased nucleotide synthesis, and promoting cell invasion. Inhibition of NADP synthesis rescues the metabolic effects of AOX1 KD. Ectopic AOX1 expression decreases NADP production, PPP flux and nucleotide synthesis, while decreasing invasion in cell line models and suppressing growth in tumor xenografts. Further gain and loss of AOX1 confirm the EZH2-dependent activation, metabolic deregulation, and tumor growth in BLCA. Our findings highlight the therapeutic potential of AOX1 and provide a basis for the development of prognostic markers for advanced BLCA.


Assuntos
Aldeído Oxidase/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Neoplasias da Bexiga Urinária/genética , Bexiga Urinária/patologia , Aldeído Oxidase/metabolismo , Animais , Linhagem Celular Tumoral , Progressão da Doença , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Cinurenina/metabolismo , Masculino , Metabolômica , Camundongos , NADP/metabolismo , Invasividade Neoplásica , Estadiamento de Neoplasias , Nucleotídeos/biossíntese , Via de Pentose Fosfato/genética , RNA-Seq , Análise Serial de Tecidos , Triptofano/metabolismo , Neoplasias da Bexiga Urinária/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cell Rep ; 24(6): 1434-1444.e7, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30089255

RESUMO

RNA sequencing (RNA-seq) detects estrogen receptor alpha gene (ESR1) fusion transcripts in estrogen receptor-positive (ER+) breast cancer, but their role in disease pathogenesis remains unclear. We examined multiple ESR1 fusions and found that two, both identified in advanced endocrine treatment-resistant disease, encoded stable and functional fusion proteins. In both examples, ESR1-e6>YAP1 and ESR1-e6>PCDH11X, ESR1 exons 1-6 were fused in frame to C-terminal sequences from the partner gene. Functional properties include estrogen-independent growth, constitutive expression of ER target genes, and anti-estrogen resistance. Both fusions activate a metastasis-associated transcriptional program, induce cellular motility, and promote the development of lung metastasis. ESR1-e6>YAP1- and ESR1-e6>PCDH11X-induced growth remained sensitive to a CDK4/6 inhibitor, and a patient-derived xenograft (PDX) naturally expressing the ESR1-e6>YAP1 fusion was also responsive. Transcriptionally active ESR1 fusions therefore trigger both endocrine therapy resistance and metastatic progression, explaining the association with fatal disease progression, although CDK4/6 inhibitor treatment is predicted to be effective.


Assuntos
Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Fusão Gênica/genética , Neoplasias da Mama/patologia , Feminino , Humanos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA