Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 633: 1033-1041, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36516679

RESUMO

Photocatalytic evolution of hydrogen is becoming a research hotspot because it can help to produce clean energy and reduce environmental pollution. Titanium dioxide (TiO2) and its composites are photocatalysts that are widely used in hydrogen evolution because of their high abundance in nature, low price, and high photo/chemical stability. However, their catalytic performances still need to be further improved, particularly in the visible light spectrum. Herein, visible light-driven photocatalytic evolution of hydrogen on Au/TiO2 nanocomposite is enhanced âˆ¼ 10 folds by selectively functionalizing the nanocomposite with cysteamine molecules. It is revealed that the amine group (-NH2) in cysteamine favors the transfer and separation of photo-generated hot carriers. The rate of hydrogen produced can be further tuned by varying the ionization of the functionalized molecules at different pH values. This work provides a simple, convenient, and effective method that can be used to improve the photocatalytic evolution of hydrogen. This method can also be used for many other nanocatalysts (e.g., Au-MoS2, Au-BiVO4) and catalytic reactions (e.g., carbon dioxide reduction, nitrogen reduction).


Assuntos
Cisteamina , Hidrogênio , Adsorção , Hidrogênio/química , Luz
2.
J Colloid Interface Sci ; 483: 268-274, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27565958

RESUMO

Several nanomaterials and techniques for the detection of mercuric ions (Hg(2+)) have been developed in the past decade. However, simple, low-cost and rapid sensor for the detection of heavy metal ions yet remains an important task. Herein, we present a highly sensitive electrochemical sensor for the femtomolar detection of Hg(2+) based on polypyrrole, pectin, and graphene (PPy/Pct/GR) which was prepared by one step electrochemical potentiodyanamic method. The effect of concentration of pectin, polypyrrole and graphene were studied for the detection of Hg(2+). The influence of experimental parameters including effect of pH, accumulation time and accumulation potential were also studied. Different pulse anodic stripping voltammetry was chosen to detect Hg(2+) at PPy/Pct/GR/GCE modified electrode. The fabricated sensor achieved an excellent performance towards Hg(2+) detection such as higher sensitivity of 28.64µAµM(-1) and very low detection limit (LOD) of 4 fM at the signal to noise ratio of 3. The LOD of our sensor offered nearly 6 orders of magnitude lower than that of recommended concentration of Hg(2+) in drinking water by United States Environmental Protection Agency and World Health Organization. Compared to all previously reported electrochemical sensors towards Hg(2+) detection, our newly fabricated sensor attained a very LOD in the detection of Hg(2+). The practicality of our proposed sensor for the detection of Hg(2+) was successfully demonstrated in untreated tap water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA