Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JAMA Pediatr ; 175(12): 1218-1226, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34570182

RESUMO

Importance: Whole-genome sequencing (WGS) shows promise as a first-line genetic test for acutely ill infants, but widespread adoption and implementation requires evidence of an effect on clinical management. Objective: To determine the effect of WGS on clinical management in a racially and ethnically diverse and geographically distributed population of acutely ill infants in the US. Design, Setting, and Participants: This randomized, time-delayed clinical trial enrolled participants from September 11, 2017, to April 30, 2019, with an observation period extending to July 2, 2019. The study was conducted at 5 US academic medical centers and affiliated children's hospitals. Participants included infants aged between 0 and 120 days who were admitted to an intensive care unit with a suspected genetic disease. Data were analyzed from January 14 to August 20, 2020. Interventions: Patients were randomized to receive clinical WGS results 15 days (early) or 60 days (delayed) after enrollment, with the observation period extending to 90 days. Usual care was continued throughout the study. Main Outcomes and Measures: The main outcome was the difference in the proportion of infants in the early and delayed groups who received a change of management (COM) 60 days after enrollment. Additional outcome measures included WGS diagnostic efficacy, within-group COM at 90 days, length of hospital stay, and mortality. Results: A total of 354 infants were randomized to the early (n = 176) or delayed (n = 178) arms. The mean participant age was 15 days (IQR, 7-32 days); 201 participants (56.8%) were boys; 19 (5.4%) were Asian; 47 (13.3%) were Black; 250 (70.6%) were White; and 38 (10.7%) were of other race. At 60 days, twice as many infants in the early group vs the delayed group received a COM (34 of 161 [21.1%; 95% CI, 15.1%-28.2%] vs 17 of 165 [10.3%; 95% CI, 6.1%-16.0%]; P = .009; odds ratio, 2.3; 95% CI, 1.22-4.32) and a molecular diagnosis (55 of 176 [31.0%; 95% CI, 24.5%-38.7%] vs 27 of 178 [15.0%; 95% CI, 10.2%-21.3%]; P < .001). At 90 days, the delayed group showed a doubling of COM (to 45 of 161 [28.0%; 95% CI, 21.2%-35.6%]) and diagnostic efficacy (to 56 of 178 [31.0%; 95% CI, 24.7%-38.8%]). The most frequent COMs across the observation window were subspecialty referrals (39 of 354; 11%), surgery or other invasive procedures (17 of 354; 4%), condition-specific medications (9 of 354; 2%), or other supportive alterations in medication (12 of 354; 3%). No differences in length of stay or survival were observed. Conclusions and Relevance: In this randomized clinical trial, for acutely ill infants in an intensive care unit, introduction of WGS was associated with a significant increase in focused clinical management compared with usual care. Access to first-line WGS may reduce health care disparities by enabling diagnostic equity. These data support WGS adoption and implementation in this population. Trail Registration: ClinicalTrials.gov Identifier: NCT03290469.


Assuntos
Doença Aguda , Doenças Genéticas Inatas , Sequenciamento Completo do Genoma , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Avaliação de Resultados em Cuidados de Saúde
2.
Fertil Steril ; 101(1): 232-6, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24083874

RESUMO

OBJECTIVE: To establish whether uniparental disomy (UPD) could represent an outcome of embryonic aneuploidy self-correction and its relevance to preimplantation genetic diagnosis, and to validate a method of UPD detection in limited quantities of cells and determine the frequency of UPD in a large sample size of human blastocysts. DESIGN: Retrospective observational. SETTING: Academic center for reproductive medicine. PATIENT(S): Couples undergoing in vitro fertilization (IVF) treatment whose embryos underwent trophectoderm biopsy single-nucleotide polymorphism (SNP) array-based 24-chromosome aneuploidy screening. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Rate of UPD observed in the human blastocyst. RESULT(S): After application of defined thresholds, 2 of 3,401 blastocysts were found to possess isodisomy, and 0 were found to possess heterodisomy. The overall frequency of UPD in the human blastocyst was therefore 0.06%. CONCLUSION(S): This validated method of detection indicates that UPD is extremely rare and suggests that routine screening during preimplantation genetic diagnosis (PGD) may not be necessary. Furthermore, chromosomal UPD is unlikely to explain or support the existence of embryonic self-correction.


Assuntos
Blastocisto/fisiologia , Dissomia Uniparental/diagnóstico , Dissomia Uniparental/genética , Feminino , Humanos , Masculino , Estudos Retrospectivos
3.
Proteins ; 80(11): 2489-500, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22730134

RESUMO

The ribosome catalyzes peptidyl transfer reactions at the growing nascent polypeptide chain. Here, we present a structural mechanism for selecting cognate over near-cognate A/T transfer RNA (tRNA). In part, the structural basis for the fidelity of translation relies on accommodation to filter cognate from near-cognate tRNAs. To examine the assembly of tRNAs within the ribonucleic-riboprotein complex, we conducted a series of all-atom molecular dynamics (MD) simulations of the entire solvated 70S Escherichia coli ribosome, along with its associated cofactors, proteins, and messenger RNA (mRNA). We measured the motion of the A/T state of tRNA between initial binding and full accommodation. The mechanism of rejection was investigated. Using novel in-house algorithms, we determined trajectory pathways. Despite the large intersubunit cavity, the available space is limited by the presence of the tRNA, which is equally large. This article describes a "structural gate," formed between helices 71 and 92 on the ribosomal large subunit, which restricts tRNA motion. The gate and the interacting protein, L14, of the 50S ribosome act as steric filters in two consecutive substeps during accommodation, each requiring: (1) sufficient energy contained in the hybrid tRNA kink and (2) sufficient energy in the Watson-Crick base pairing of the codon-anticodon. We show that these barriers act to filter out near-cognate tRNA and promote proofreading of the codon-anticodon. Since proofreading is essential for understanding the fidelity of translation, our model for the dynamics of this process has substantial biomedical implications.


Assuntos
Escherichia coli/química , Haloarcula marismortui/química , RNA de Transferência/química , Ribossomos/química , Thermus thermophilus/química , Escherichia coli/metabolismo , Haloarcula marismortui/metabolismo , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Elongação Traducional da Cadeia Peptídica , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Thermus thermophilus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA