Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
World J Gastrointest Surg ; 16(3): 740-750, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38577075

RESUMO

BACKGROUND: Evidence suggests inflammatory mesenteric fat is involved in post-operative recurrence (POR) of Crohn's disease (CD). However, its prognostic value is uncertain, in part, due to difficulties studying it non-invasively. AIM: To evaluate the prognostic value of pre-operative radiographic mesenteric parameters for early endoscopic POR (ePOR). METHODS: We conducted a retrospective cohort study of CD subjects ≥ 12 years who underwent ileocecal or small bowel resection between 1/1/2007 to 12/31/2021 with computerized tomography abdomen/pelvis ≤ 6 months pre-operatively and underwent ileocolonoscopy ≤ 15 months post-operatively. Visceral adipose tissue (VAT) volume (cm3), ratio of VAT:subcutaneous adipose tissue (SAT) volume, VAT radiodensity, and ratio of VAT:SAT radiodensity were generated semiautomatically. Mesenteric lymphadenopathy (LAD, largest lymph node > 10 mm) and severe vasa recta (VR) engorgement (diameter of the VR supplying diseased bowel ≥ 2 × VR supplying healthy bowel) were derived manually. The primary outcome was early ePOR (Rutgeert's score ≥ i2 on first endoscopy ≤ 15 months post-operatively) and the secondary outcome was ePOR severity (Rutgeert's score i0-4). Regression analyses were performed adjusting for demographic and disease-related characteristics to calculate adjusted odds ratio (aOR) and 95% confidence interval (CI). RESULTS: Of the 139 subjects included, 45% of subjects developed early ePOR (n = 63). VAT radiodensity (aOR 0.59, 95%CI: 0.38-0.90) and VAT:SAT radiodensity (aOR 8.54, 95%CI: 1.48-49.28) were associated with early ePOR, whereas, VAT volume (aOR 1.23, 95%CI: 0.78-1.95), VAT:SAT volume (aOR 0.80, 95%CI: 0.53-1.20), severe VR engorgement (aOR 1.53, 95%CI: 0.64-3.66), and mesenteric LAD (aOR 1.59, 95%CI: 0.67-3.79) were not. Similar results were observed for severity of ePOR. CONCLUSION: VAT radiodensity is potentially a novel non-invasive prognostic imaging marker to help risk stratify CD patients for POR.

2.
Cell Mol Gastroenterol Hepatol ; 16(1): 83-105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37011811

RESUMO

BACKGROUND & AIMS: Tumor necrosis factor (TNF) superfamily member tumor necrosis factor-like protein 1A (TL1A) has been associated with the susceptibility and severity of inflammatory bowel diseases. However, the function of the tumor necrosis factor-like protein 1A and its receptor death receptor 3 (DR3) in the development of intestinal inflammation is incompletely understood. We investigated the role of DR3 expressed by intestinal epithelial cells (IECs) during intestinal homeostasis, tissue injury, and regeneration. METHODS: Clinical phenotype and histologic inflammation were assessed in C57BL/6 (wild-type), Tl1a-/- and Dr3-/- mice in dextran sulfate sodium (DSS)-induced colitis. We generated mice with an IEC-specific deletion of DR3 (Dr3ΔIEC) and assessed intestinal inflammation and epithelial barrier repair. In vivo intestinal permeability was assessed by fluorescein isothiocyanate dextran uptake. Proliferation of IECs was analyzed by bromodeoxyuridine incorporation. Expression of DR3 messenger RNA was assessed by fluorescent in situ hybridization. Small intestinal organoids were used to determine ex vivo regenerative potential. RESULTS: Dr3-/- mice developed more severe colonic inflammation than wild-type mice in DSS-induced colitis with significantly impaired IEC regeneration. Homeostatic proliferation of IECs was increased in Dr3-/- mice, but blunted during regeneration. Cellular localization and expression of the tight junction proteins Claudin-1 and zonula occludens-1 were altered, leading to increased homeostatic intestinal permeability. Dr3ΔIEC mice recapitulated the phenotype observed in Dr3-/- mice with increased intestinal permeability and IEC proliferation under homeostatic conditions and impaired tissue repair and increased bacterial translocation during DSS-induced colitis. Impaired regenerative potential and altered zonula occludens-1 localization also were observed in Dr3ΔIEC enteroids. CONCLUSIONS: Our findings establish a novel function of DR3 in IEC homeostasis and postinjury regeneration independent of its established role in innate lymphoid cells and T-helper cells.


Assuntos
Colite , Imunidade Inata , Camundongos , Animais , Hibridização in Situ Fluorescente , Mucosa Intestinal/patologia , Camundongos Endogâmicos C57BL , Linfócitos/metabolismo , Colite/patologia , Inflamação/patologia , Fatores de Necrose Tumoral/efeitos adversos , Fatores de Necrose Tumoral/genética , Fatores de Necrose Tumoral/metabolismo , Homeostase , Regeneração
3.
Cell Genom ; 3(3): 100272, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36950379

RESUMO

Estrogen and progesterone have been extensively studied in the mammary gland, but the molecular effects of androgen remain largely unexplored. Transgender men are recorded as female at birth but identify as male and may undergo gender-affirming androgen therapy to align their physical characteristics and gender identity. Here we perform single-cell-resolution transcriptome, chromatin, and spatial profiling of breast tissues from transgender men following androgen therapy. We find canonical androgen receptor gene targets are upregulated in cells expressing the androgen receptor and that paracrine signaling likely drives sex-relevant androgenic effects in other cell types. We also observe involution of the epithelium and a spatial reconfiguration of immune, fibroblast, and vascular cells, and identify a gene regulatory network associated with androgen-induced fat loss. This work elucidates the molecular consequences of androgen activity in the human breast at single-cell resolution.

4.
World J Gastrointest Oncol ; 14(7): 1218-1226, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36051103

RESUMO

Nearly 80% of patients with pancreatic ductal adenocarcinoma (PDAC) develop cachexia along their disease course. Cachexia is characterized by progressive weight loss, muscle wasting, and systemic inflammation and has been linked to poorer outcomes and impairments in quality of life. Management of PDAC cachexia has historically involved a multidisciplinary effort comprised of nutritional support, pancreatic enzyme replacement therapy, and/or pharmacologic interventions. Despite current interventions to mitigate PDAC cachexia, a significant proportion of patients continue to die from complications associated with cachexia underscoring the need for novel insights and treatments for this syndrome. We highlight the feasibility and effectiveness of a recent enteral feeding prospective trial at our institution to improve cachexia outcomes in patients with advanced PDAC. Additionally, we were among the first to characterize the stool microbiome composition in patients with advanced PDAC receiving enteral feeding for the treatment of cachexia. Novel insights into the relationship between enteral nutritional support, cachexia, and the gut microbiome are presented. These promising results are discussed in the context of a potential ability to modulate the stool microbiome as a new interventional strategy to mitigate PDAC cachexia.

5.
Cell ; 183(3): 666-683.e17, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-32991841

RESUMO

A mysterious feature of Crohn's disease (CD) is the extra-intestinal manifestation of "creeping fat" (CrF), defined as expansion of mesenteric adipose tissue around the inflamed and fibrotic intestine. In the current study, we explore whether microbial translocation in CD serves as a central cue for CrF development. We discovered a subset of mucosal-associated gut bacteria that consistently translocated and remained viable in CrF in CD ileal surgical resections, and identified Clostridium innocuum as a signature of this consortium with strain variation between mucosal and adipose isolates, suggesting preference for lipid-rich environments. Single-cell RNA sequencing characterized CrF as both pro-fibrotic and pro-adipogenic with a rich milieu of activated immune cells responding to microbial stimuli, which we confirm in gnotobiotic mice colonized with C. innocuum. Ex vivo validation of expression patterns suggests C. innocuum stimulates tissue remodeling via M2 macrophages, leading to an adipose tissue barrier that serves to prevent systemic dissemination of bacteria.


Assuntos
Tecido Adiposo/microbiologia , Translocação Bacteriana , Microbioma Gastrointestinal , Mesentério/microbiologia , Tecido Adiposo/patologia , Animais , Biodiversidade , Biomarcadores/metabolismo , Polaridade Celular , Células Cultivadas , Colite Ulcerativa/patologia , Doença de Crohn/microbiologia , Doença de Crohn/patologia , Microbioma Gastrointestinal/genética , Regulação da Expressão Gênica , Vida Livre de Germes , Humanos , Íleo/microbiologia , Íleo/patologia , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Metagenoma , Metagenômica , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , RNA Ribossômico 16S/genética , Células-Tronco/metabolismo
7.
mBio ; 10(1)2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670618

RESUMO

Microbiome-based signatures of disease have focused primarily on the bacterial component of the microbiome for numerous reasons, including ease of sample preparation and depth of the curated bacterial database. However, even more numerous than bacteria are the bacteriophages of the viral portion of the microbiome, which have emerged with identifiable disease signatures in other diseases, such as inflammatory bowel diseases. Here, G. D. Hannigan, M. B. Duhaime, M. T. Ruffin, IV, C. C. Koumpouras, and P. D. Schloss (mBio 9:e02248-18, https://doi.org/10.1128/mBio.02248-18) present a study that explores the potential bacteriophage signatures in patients with colorectal cancer (CRC) and the associated changes in bacterial signatures. Sampling from a cross section of 60 patients at different stages of CRC in addition to 30 healthy controls, this study highlights the need for greater exploration into the virome, including the "dark matter" of diverse forms that viruses assume in the gastrointestinal tract.


Assuntos
Bacteriófagos , Neoplasias Colorretais , Bactérias , Humanos , Microbiota
9.
Mucosal Immunol ; 11(5): 1466-1476, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29988118

RESUMO

Tumor necrosis factor-like cytokine 1A (TL1A, TNFSF15) is implicated in inflammatory bowel disease (IBD), modulating the location and severity of intestinal inflammation and fibrosis. TL1A expression is increased in inflamed gut mucosa and associated with fibrostenosing Crohn's disease. Tl1a-overexpression in mice lead to spontaneous ileitis, and exacerbated induced proximal colitis and fibrosis. IBD is associated with shifts in the gut microbiome, but the effect of differing microbial populations and their interaction with TL1A on fibrosis has not been investigated. We demonstrate that the pro-fibrotic and inflammatory phenotype resulting from Tl1a-overexpression is abrogated in the absence of resident microbiota. To evaluate if this is due to the absence of a unique bacterial population, as opposed to any bacteria per se, we gavaged germ-free (GF) wild-type and Tl1a-transgenic (Tl1a-Tg) mice with stool from specific pathogen free (SPF) mice and a healthy human donor (Hu). Reconstitution with SPF, but not Hu microbiota, resulted in increased intestinal collagen deposition and fibroblast activation in Tl1a-Tg mice. Notably, there was reduced fibroblast migration and activation under GF conditions compared to native conditions. We then identified several candidate organisms that correlated directly with increased fibrosis in reconstituted mice and showed that these organisms directly impact fibroblast function in vitro. Thus, Tl1a-mediated intestinal fibrosis and fibroblast activation are dependent on specific microbial populations.


Assuntos
Fibrose/metabolismo , Fibrose/microbiologia , Microbioma Gastrointestinal/fisiologia , Inflamação/metabolismo , Intestinos/microbiologia , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Animais , Colite/metabolismo , Colite/microbiologia , Colágeno/metabolismo , Doença de Crohn/metabolismo , Doença de Crohn/microbiologia , Fibroblastos/metabolismo , Fibroblastos/microbiologia , Humanos , Ileíte/metabolismo , Ileíte/microbiologia , Inflamação/microbiologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
10.
Mediators Inflamm ; 2013: 397642, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23766559

RESUMO

The common food additive carrageenan is a known activator of inflammation in mammalian tissues and stimulates both the canonical and noncanonical pathways of NF-κB activation. Exposure to low concentrations of carrageenan (10 µ g/mL in the water supply) has produced glucose intolerance, insulin resistance, and impaired insulin signaling in C57BL/6 mice. B-cell leukemia/lymphoma 10 (Bcl10) is a mediator of inflammatory signals from Toll-like receptor (TLR) 4 in myeloid and epithelial cells. Since the TLR4 signaling pathway is activated in diabetes and by carrageenan, we addressed systemic and intestinal inflammatory responses following carrageenan exposure in Bcl10 wild type, heterozygous, and null mice. Fecal calprotectin and circulating keratinocyte chemokine (KC), nuclear RelA and RelB, phospho(Thr559)-NF-κB-inducing kinase (NIK), and phospho(Ser36)-IκBα in the colonic epithelial cells were significantly less (P < 0.001) in the carrageenan-treated Bcl10 null mice than in controls. IL-10-deficient mice exposed to carrageenan in a germ-free environment showed an increase in activation of the canonical pathway of NF-κB (RelA) activation, but without increase in RelB or phospho-Bcl10, and exogenous IL-10 inhibited only the canonical pathway of NF- κ B activation in cultured colonic cells. These findings demonstrate a Bcl10 requirement for maximum development of carrageenan-induced inflammation and lack of complete suppression by IL-10 of carrageenan-induced inflammation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carragenina/toxicidade , Colo/efeitos dos fármacos , Colo/imunologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Interleucina-10/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteína 10 de Linfoma CCL de Células B , Linhagem Celular , Quimiocina CCL2/sangue , Colo/metabolismo , Colo/patologia , Citocinas/sangue , Ensaio de Imunoadsorção Enzimática , Técnicas In Vitro , Inflamação/genética , Interleucina-10/deficiência , Interleucina-6/sangue , Interleucina-8/sangue , Complexo Antígeno L1 Leucocitário/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , NF-kappa B/sangue , Fosforilação
12.
Nat Immunol ; 13(10): 947-53, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22922363

RESUMO

Microbiota are essential for weight gain in mouse models of diet-induced obesity (DIO), but the pathways that cause the microbiota to induce weight gain are unknown. We report that mice deficient in lymphotoxin, a key molecule in gut immunity, were resistant to DIO. Ltbr(-/-) mice had different microbial community composition compared to their heterozygous littermates, including an overgrowth of segmented filamentous bacteria (SFB). Furthermore, cecal transplantation conferred leanness to germ-free recipients. Housing Ltbr(-/-) mice with their obese siblings rescued weight gain in Ltbr(-/-) mice, demonstrating the communicability of the obese phenotype. Ltbr(-/-) mice lacked interleukin 23 (IL-23) and IL-22, which can regulate SFB. Mice deficient in these pathways also resisted DIO, demonstrating that intact mucosal immunity guides diet-induced changes to the microbiota to enable obesity.


Assuntos
Imunidade nas Mucosas , Receptor beta de Linfotoxina/fisiologia , Linfotoxina-alfa/fisiologia , Obesidade , Animais , Bactérias/crescimento & desenvolvimento , Bactérias/imunologia , Ceco/microbiologia , Ceco/transplante , Dieta , Metabolismo Energético , Vida Livre de Germes , Interleucina-23/deficiência , Interleucina-23/fisiologia , Interleucinas/deficiência , Interleucinas/fisiologia , Receptor beta de Linfotoxina/genética , Linfotoxina-alfa/deficiência , Linfotoxina-alfa/genética , Metagenoma , Camundongos , Camundongos Knockout , Obesidade/etiologia , Obesidade/imunologia , Obesidade/metabolismo , Aumento de Peso/imunologia , Interleucina 22
13.
Nutr Metab (Lond) ; 7: 1, 2010 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-20148110

RESUMO

Breast cancer is the most prevalent cancer in American women. Dietary factors are thought to have a strong influence on breast cancer incidence. This study utilized a meal-feeding protocol with female Sprague-Dawley rats to evaluate effects of two ratios of carbohydrate:protein on promotion and early progression of breast tissue carcinomas. Mammary tumors were induced by N-methyl-N-nitrosourea (MNU) at 52 d of age. Post-induction, animals were assigned to consume either a low protein high carbohydrate diet (LPHC; 15% and 60% of energy, respectively) or a high protein moderate carbohydrate diet (HPMC; 35% and 40% of energy, respectively) for 10 wk. Animals were fed 3 meals/day to mimic human absorption and metabolism patterns. The rate of palpable tumor incidence was reduced in HPMC relative to LPHC (12.9 +/- 1.4%/wk vs. 18.2 +/- 1.3%/wk). At 3 wk, post-prandial serum insulin was larger in the LPHC relative to HPMC (+136.4 +/- 33.1 pmol/L vs. +38.1 +/- 23.4 pmol/L), while at 10 wk there was a trend for post-prandial IGF-I to be increased in HPMC (P = 0.055). There were no differences in tumor latency, tumor surface area, or cumulative tumor mass between diet groups. The present study provides evidence that reducing the dietary carbohydrate:protein ratio attenuates the development of mammary tumors. These findings are consistent with reduced post-prandial insulin release potentially diminishing the proliferative environment required for breast cancer tumors to progress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA