Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 13(22): e2400438, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38885495

RESUMO

Two-photon polymerization (TPP) is an additive manufacturing technique with micron-scale resolution that is rapidly gaining ground for a range of biomedical applications. TPP is particularly attractive for the creation of microscopic three-dimensional structures in biocompatible and noncytotoxic resins. Here, TPP is used to develop microfluidic interfaces which provide chronic fluidic access to the brain of preclinical research models. These microcatheters can be used for either convection-enhanced delivery (CED) or for the repeated collection of liquid biopsies. In a brain phantom, infusions with the micronozzle result in more localized distribution clouds and lower backflow compared to a control catheter. In mice, the delivery interface enables faster, more precise, and physiologically less disruptive fluid injections. A second microcatheter design enables repeated, longitudinal sampling of cerebrospinal fluid (CSF) over time periods as long as 250 days. Moreover, further in vivo studies demonstrate that the blood-CSF barrier is intact after chronic implantation of the sampling interface and that samples are suitable for downstream molecular analysis for the identification of nucleic acid- or peptide-based biomarkers. Ultimately, the versatility of this fabrication technique implies a great translational potential for simultaneous drug delivery and biomarker tracking in a range of human neurological diseases.


Assuntos
Encéfalo , Animais , Encéfalo/metabolismo , Camundongos , Barreira Hematoencefálica/metabolismo , Microfluídica/métodos
2.
J Biol Chem ; 299(6): 104794, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37164155

RESUMO

Clinical development of γ-secretases, a family of intramembrane cleaving proteases, as therapeutic targets for a variety of disorders including cancer and Alzheimer's disease was aborted because of serious mechanism-based side effects in the phase III trials of unselective inhibitors. Selective inhibition of specific γ-secretase complexes, containing either PSEN1 or PSEN2 as the catalytic subunit and APH1A or APH1B as supporting subunits, does provide a feasible therapeutic window in preclinical models of these disorders. We explore here the pharmacophoric features required for PSEN1 versus PSEN2 selective inhibition. We synthesized a series of brain penetrant 2-azabicyclo[2,2,2]octane sulfonamides and identified a compound with low nanomolar potency and high selectivity (>250-fold) toward the PSEN1-APH1B subcomplex versus PSEN2 subcomplexes. We used modeling and site-directed mutagenesis to identify critical amino acids along the entry part of this inhibitor into the catalytic site of PSEN1. Specific targeting one of the different γ-secretase complexes might provide safer drugs in the future.


Assuntos
Secretases da Proteína Precursora do Amiloide , Complexos Multiproteicos , Presenilina-1 , Sulfonamidas , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Presenilina-1/antagonistas & inibidores , Presenilina-1/metabolismo , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/metabolismo , Sulfonamidas/farmacologia , Especificidade por Substrato , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/metabolismo
3.
Front Oncol ; 12: 1017612, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263202

RESUMO

DNA-encoded delivery and in vivo expression of antibody therapeutics presents an innovative alternative to conventional protein production and administration, including for cancer treatment. To support clinical translation, we evaluated this approach in 18 40-45 kg sheep, using a clinical-matched intramuscular electroporation (IM EP) and hyaluronidase-plasmid DNA (pDNA) coformulation setup. Two cohorts of eight sheep received either 1 or 4 mg pDNA encoding an ovine anti-cancer embryonic antigen (CEA) monoclonal antibody (mAb; OVAC). Results showed a dose-response with average maximum serum concentrations of respectively 0.3 and 0.7 µg/ml OVAC, 4-6 weeks after IM EP. OVAC was detected in all 16 sheep throughout the 6-week follow-up, and no anti-OVAC antibodies were observed. Another, more exploratory, cohort of two sheep received a 12 mg pOVAC dose. Both animals displayed a similar dose-dependent mAb increase and expression profile in the first two weeks. However, in one animal, an anti-OVAC antibody response led to loss of mAb detection four weeks after IM EP. In the other animal, no anti-drug antibodies were observed. Serum OVAC concentrations peaked at 4.9 µg/ml 6 weeks after IM EP, after which levels gradually decreased but remained detectable around 0.2 to 0.3 µg/ml throughout a 13-month follow-up. In conclusion, using a delivery protocol that is currently employed in clinical Phase 1 studies of DNA-based antibodies, we achieved robust and prolonged in vivo production of anti-cancer DNA-encoded antibody therapeutics in sheep. The learnings from this large-animal model regarding the impact of pDNA dose and host immune response on the expressed mAb pharmacokinetics can contribute to advancing clinical translation.

4.
EMBO Mol Med ; 14(4): e09824, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35352880

RESUMO

Single domain antibodies (VHHs) are potentially disruptive therapeutics, with important biological value for treatment of several diseases, including neurological disorders. However, VHHs have not been widely used in the central nervous system (CNS), largely because of their restricted blood-brain barrier (BBB) penetration. Here, we propose a gene transfer strategy based on BBB-crossing adeno-associated virus (AAV)-based vectors to deliver VHH directly into the CNS. As a proof-of-concept, we explored the potential of AAV-delivered VHH to inhibit BACE1, a well-characterized target in Alzheimer's disease. First, we generated a panel of VHHs targeting BACE1, one of which, VHH-B9, shows high selectivity for BACE1 and efficacy in lowering BACE1 activity in vitro. We further demonstrate that a single systemic dose of AAV-VHH-B9 produces positive long-term (12 months plus) effects on amyloid load, neuroinflammation, synaptic function, and cognitive performance, in the AppNL-G-F Alzheimer's mouse model. These results constitute a novel therapeutic approach for neurodegenerative diseases, which is applicable to a range of CNS disease targets.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Ácido Aspártico Endopeptidases , Anticorpos de Domínio Único , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/imunologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Ácido Aspártico Endopeptidases/imunologia , Ácido Aspártico Endopeptidases/metabolismo , Barreira Hematoencefálica , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos/uso terapêutico , Camundongos , Camundongos Transgênicos
5.
Cancers (Basel) ; 12(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266104

RESUMO

Neuropilin-1 (NRP-1) is a co-receptor for semaphorins and vascular endothelial growth factor (VEGF) family members that can be expressed on cancer cells and tumor-infiltrating myeloid, endothelial and lymphoid cells. It has been linked to a tumor-promoting environment upon interaction with semaphorin 3A (Sema3A). Nanobodies (Nbs) targeting NRP-1 were generated for their potential to hamper the NRP-1/Sema3A interaction and their impact on colorectal carcinoma (CRC) development was evaluated in vivo through the generation of anti-NRP-1-producing CRC cells. We observed that tumor growth was significantly delayed and survival prolonged when the anti-NRP-1 Nbs were produced in vivo. We further analyzed the tumor microenvironment and observed that the pro-inflammatory MHC-IIhigh/trophic MHC-IIlow macrophage ratio was increased in tumors that produce anti-NRP-1 Nbs. This finding was corroborated by an increase in the expression of genes associated with MHC-IIhigh macrophages and a decrease in the expression of MHC-IIlow macrophage-associated genes in the macrophage pool sorted from anti-NRP-1 Nb-producing tumors. Moreover, we observed a significantly higher percentage of tumor-associated antigen-specific CD8+ T cells in tumors producing anti-NRP-1 Nbs. These data demonstrate that an intratumoral expression of NRP-1/Sema3A blocking biologicals increases anti-tumor immunity.

6.
J Biol Chem ; 292(27): 11452-11465, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28526745

RESUMO

The ephrin receptor A4 (EphA4) is one of the receptors in the ephrin system that plays a pivotal role in a variety of cell-cell interactions, mostly studied during development. In addition, EphA4 has been found to play a role in cancer biology as well as in the pathogenesis of several neurological disorders such as stroke, spinal cord injury, multiple sclerosis, amyotrophic lateral sclerosis (ALS), and Alzheimer's disease. Pharmacological blocking of EphA4 has been suggested to be a therapeutic strategy for these disorders. Therefore, the aim of our study was to generate potent and selective Nanobodies against the ligand-binding domain of the human EphA4 receptor. We identified two Nanobodies, Nb 39 and Nb 53, that bind EphA4 with affinities in the nanomolar range. These Nanobodies were most selective for EphA4, with residual binding to EphA7 only. Using Alphascreen technology, we found that both Nanobodies displaced all known EphA4-binding ephrins from the receptor. Furthermore, Nb 39 and Nb 53 inhibited ephrin-induced phosphorylation of the EphA4 protein in a cell-based assay. Finally, in a cortical neuron primary culture, both Nanobodies were able to inhibit endogenous EphA4-mediated growth-cone collapse induced by ephrin-B3. Our results demonstrate the potential of Nanobodies to target the ligand-binding domain of EphA4. These Nanobodies may deserve further evaluation as potential therapeutics in disorders in which EphA4-mediated signaling plays a role.


Assuntos
Afinidade de Anticorpos , Receptor EphA4/imunologia , Anticorpos de Domínio Único/imunologia , Animais , Linhagem Celular , Humanos , Camundongos , Domínios Proteicos , Receptor EphA4/química , Anticorpos de Domínio Único/química
7.
J Struct Biol ; 171(1): 95-101, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20230900

RESUMO

Plasminogen activator inhibitor-1 (PAI-1) is a serine protease inhibitor (serpin) that plays an important role in cardiovascular disorders and tumor development. The potential role of PAI-1 as a drug target has been evaluated in various animal models (e.g. mouse and rat). Sensitivity to PAI-1 inhibitory agents varied in different species. To date, absence of PAI-1 structures from species other than human hampers efforts to reveal the molecular basis for the observed species differences. Here we describe the structure of latent mouse PAI-1. Comparison with available structures of human PAI-1 reveals (1) a differential positioning of α-helix A; (2) differences in the gate region; and (3) differences in the reactive center loop position. We demonstrate that the optimal binding site of inhibitors may be dependent on the orthologs, and our results affect strategies in the rational design of a pharmacologically active PAI-1 inhibitor.


Assuntos
Inibidor 1 de Ativador de Plasminogênio/química , Serpina E2/química , Animais , Sítios de Ligação , Cristalização , Humanos , Camundongos , Modelos Moleculares , Mutação , Inibidor 1 de Ativador de Plasminogênio/genética , Estrutura Terciária de Proteína , Alinhamento de Sequência , Análise de Sequência de Proteína , Serpina E2/genética
8.
Structure ; 15(9): 1105-16, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17850750

RESUMO

Elevated plasma levels of plasminogen activator inhibitor-1 (PAI-1) have been correlated with cardiovascular diseases such as myocardial infarction and venous thrombosis. PAI-1 has also been shown to play an important role in tumor development, diabetes, and obesitas. Monoclonal antibodies MA-8H9D4 and MA-56A7C10, and their single-chain variable fragments (scFv), exhibit PAI-1-neutralizing properties. In this study, a rigid-body docking approach is used to predict the binding geometry of two distinct conformations of PAI-1 (active and latent) in complex with these antibody fragments. Resulting models were initially refined by using the dead-end elimination algorithm. Different filtering criteria based on the mutagenesis studies and structural considerations were applied to select the final models. These were refined by using the slow-cooling torsion-angle dynamic annealing protocol. The docked structures reveal the respective epitopes and paratopes and their potential interactions. This study provides crucial information that is necessary for the rational development of low-molecular weight PAI-1 inhibitors.


Assuntos
Fragmentos de Imunoglobulinas/química , Inibidor 1 de Ativador de Plasminogênio/química , Fragmentos de Imunoglobulinas/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA