Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 126: 112175, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34082976

RESUMO

Selection of feasible hybrid-hydrogels for best chondrogenic differentiation of human mesenchymal stromal cells (hMSCs) represents an important challenge in cartilage regeneration. In this study, three-dimensional hybrid hydrogels obtained by chemical crosslinking of poly (ethylene glycol) diglycidyl ether (PEGDGE), gelatin (G) without or with chitosan (Ch) or dextran (Dx) polysaccharides were developed. The hydrogels, namely G-PEG, G-PEG-Ch and G-PEG-Dx, were prepared with an innovative, versatile and cell-friendly technique that involves two preparation steps specifically chosen to increase the degree of crosslinking and the physical-mechanical stability of the product: a first homogeneous phase reaction followed by directional freezing, freeze-drying and post-curing. Chondrogenic differentiation of human bone marrow mesenchymal stromal cells (hBM-MSC) was tested on these hydrogels to ascertain whether the presence of different polysaccharides could favor the formation of the native cartilage structure. We demonstrated that the hydrogels exhibited an open pore porous morphology with high interconnectivity and the incorporation of Ch and Dx into the G-PEG common backbone determined a slightly reduced stiffness compared to that of G-PEG hydrogels. We demonstrated that G-PEG-Dx showed a significant increase of its anisotropic characteristic and G-PEG-Ch exhibited higher and faster stress relaxation behavior than the other hydrogels. These characteristics were associated to absence of chondrogenic differentiation on G-PEG-Dx scaffold and good chondrogenic differentiation on G-PEG and G-PEG-Ch. Furthermore, G-PEG-Ch induced the minor collagen proteins and the formation of collagen fibrils with a diameter like native cartilage. This study demonstrated that both anisotropic and stress relaxation characteristics of the hybrid hydrogels were important features directly influencing the chondrogenic differentiation potentiality of hBM-MSC.


Assuntos
Células-Tronco Mesenquimais , Diferenciação Celular , Condrogênese , Gelatina , Humanos , Hidrogéis , Engenharia Tecidual
2.
Macromol Biosci ; 19(8): e1900099, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31298816

RESUMO

Rational design and development of tailorable simple synthesis process remains a centerpiece of investigational efforts toward engineering advanced hydrogels. In this study, a green and scalable synthesis approach is developed to formulate a set of gelatin-based macroporous hybrid hydrogels. This approach consists of four sequential steps starting from liquid-phase pre-crosslinking/grafting, unidirectional freezing, freeze-drying, and finally post-curing process. The chemical crosslinking mainly involves between epoxy groups of functionalized polyethylene glycol and functional groups of gelatin both in liquid and solid state. Importantly, this approach allows to accommodate different polymers, chitosan or hydroxyethyl cellulose, under identical benign condition. Structural and mechanical anisotropy can be tuned by the selection of polymer constituents. Overall, all hydrogels show suitable structural stability, good swellability, high porosity and pore interconnectivity, and maintenance of mechanical integrity during 3-week-long hydrolytic degradation. Under compression, hydrogels exhibit robust mechanical properties with nonlinear elasticity and stress-relaxation behavior and show no sign of mechanical failure under repeated compression at 50% deformation. Biological experiment with human bone marrow mesenchymal stromal cells (hMSCs) reveals that hydrogels are biocompatible, and their physicomechanical properties are suitable to support cells growth, and osteogenic/chondrogenic differentiation, demonstrating their potential application for bone and cartilage regenerative medicine toward clinically relevant endpoints.


Assuntos
Materiais Biocompatíveis/síntese química , Condrogênese/efeitos dos fármacos , Gelatina/química , Hidrogéis/síntese química , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Anisotropia , Materiais Biocompatíveis/farmacologia , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Quitosana/química , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrogênese/genética , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Expressão Gênica , Humanos , Hidrogéis/farmacologia , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/genética , Polietilenoglicóis/química , Porosidade , Estresse Mecânico , Engenharia Tecidual , Alicerces Teciduais
3.
J Tissue Eng Regen Med ; 13(10): 1896-1911, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31348588

RESUMO

Cartilage tissue engineering remains problematic because no systems are able to induce signals that contribute to native cartilage structure formation. Therefore, we tested the potentiality of gelatin-polyethylene glycol scaffolds containing three different concentrations of chitosan (CH; 0%, 8%, and 16%) on chondrogenic differentiation of human platelet lysate-expanded human bone marrow mesenchymal stromal cells (hBM-MSCs). Typical chondrogenic (SOX9, collagen type 2, and aggrecan), hypertrophic (collagen type 10), and fibrotic (collagen type 1) markers were evaluated at gene and protein level at Days 1, 28, and 48. We demonstrated that 16% CH scaffold had the highest percentage of relaxation with the fastest relaxation rate. In particular, 16% CH scaffold, combined with chondrogenic factor TGFß3, was more efficient in inducing hBM-MSCs chondrogenic differentiation compared with 0% or 8% scaffolds. Collagen type 2, SOX9, and aggrecan showed the same expression in all scaffolds, whereas collagen types 10 and 1 markers were efficiently down-modulated only in 16% CH. We demonstrated that using human platelet lysate chronically during hBM-MSCs chondrogenic differentiation, the chondrogenic, hypertrophic, and fibrotic markers were significantly decreased. Our data demonstrate that only a high concentration of CH, combined with TGFß3, creates an environment capable of guiding in vitro hBM-MSCs towards a phenotypically stable chondrogenesis.


Assuntos
Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Quitosana/farmacologia , Condrogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Alicerces Teciduais/química , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/ultraestrutura , Colágeno Tipo II/metabolismo , Fibrose , Hidrogéis/farmacologia , Hidrólise , Hipertrofia , Células-Tronco Mesenquimais/efeitos dos fármacos , Estresse Mecânico , Suínos
4.
Biomater Sci ; 7(3): 836-842, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30574966

RESUMO

Tissue engineers have explored a set of materials cues that can allow control of cell viability and guide cell fate and functions. Although the effect of substrate stiffness on cell fate has been extensively studied and established, the role of substrate stress relaxation, the ability of a substrate to dissipate cell-induced forces, is only emerging. Recently, several studies have demonstrated that substrate stress relaxation is an important mechanical cue for cell spreading, proliferation and differentiation in vitro. In this mini-review, we highlight the influence of substrate stress relaxation on cell behavior and function as well as provide future perspectives. Firstly, we describe the methods used for characterizing the stress relaxation/creep responses of hydrogels along with the molecular origin of viscoelastic properties. Then, we highlight the most recent studies elucidating the stress relaxation effect on cellular behavior using physically cross-linked hydrogels. Finally, we report on an emerging alternative design of tunable viscoelastic hydrogels: chemically cross-linked (reversible linkages) adaptable hydrogels that have been used as stable 3D cell culture platforms for a few years in the era of hydrogel systems.


Assuntos
Hidrogéis/química , Estresse Mecânico , Animais , Diferenciação Celular , Proliferação de Células , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA