Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Mol Sci ; 24(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37446174

RESUMO

Mental stress is a risk factor for myocardial infarction in women. The central hypothesis of this study is that restraint stress induces sex-specific changes in gene expression in the heart, which leads to an intensified response to ischemia/reperfusion injury due to the development of a pro-oxidative environment in female hearts. We challenged male and female C57BL/6 mice in a restraint stress model to mimic the effects of mental stress. Exposure to restraint stress led to sex differences in the expression of genes involved in cardiac hypertrophy, inflammation, and iron-dependent cell death (ferroptosis). Among those genes, we identified tumor protein p53 and cyclin-dependent kinase inhibitor 1A (p21), which have established controversial roles in ferroptosis. The exacerbated response to I/R injury in restraint-stressed females correlated with downregulation of p53 and nuclear factor erythroid 2-related factor 2 (Nrf2, a master regulator of the antioxidant response system-ARE). S-female hearts also showed increased superoxide levels, lipid peroxidation, and prostaglandin-endoperoxide synthase 2 (Ptgs2) expression (a hallmark of ferroptosis) compared with those of their male counterparts. Our study is the first to test the sex-specific impact of restraint stress on the heart in the setting of I/R and its outcome.


Assuntos
Traumatismos Cardíacos , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Camundongos , Feminino , Masculino , Animais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Estresse Oxidativo , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/genética , Expressão Gênica , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo
2.
Am J Physiol Gastrointest Liver Physiol ; 323(3): G177-G187, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35853010

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent forms of chronic liver disease in the United States and worldwide. Nonalcoholic steatohepatitis (NASH), the most advanced form of NAFLD, is characterized by hepatic steatosis associated with inflammation and hepatocyte death. No treatments are currently available for NASH other than lifestyle changes, and the disease lacks specific biomarkers. The signaling lymphocytic activation molecule family 1 (SLAMF1) protein is a self-ligand receptor that plays a role in orchestrating an immune response to some pathogens and cancers. We found that livers from humans and mice with NASH showed a more prominent immunohistochemistry staining for SLAMF1 than non-NASH controls. Furthermore, SLAMF1 levels are significantly increased in NASH plasma samples from mice and humans compared with their respective controls. In mice, the levels of SLAMF1 correlated significantly with the severity of the NASH phenotype. To test whether SLAMF 1 is expressed by hepatocytes, HepG2 cells and primary murine hepatocytes were treated with palmitic acid (PA) to induce a state of lipotoxicity mimicking NASH. We found that PA treatments of HepG2 cells and primary hepatocytes lead to significant increases in SLAMF1 levels. The downregulation of SLAMF1 in HepG2 cells improved the cell viability and reduced cytotoxicity. The in vivo data using mouse and human NASH samples suggests a potential role for this protein as a noninvasive biomarker for NASH. The in vitro data suggest a role for SLAMF1 as a potential therapeutic target to prevent hepatocyte death in response to lipotoxicity.NEW & NOTEWORTHY This study identified for the first time SLAMF1 as a mediator of hepatocyte death in nonalcoholic fatty liver disease (NASH) and as a marker of NASH in humans. There are no pharmacological treatments available for NASH, and diagnostic tools are limited to invasive liver biopsies. Therefore, since SLAMF1 levels correlate with disease progression and SLAMF1 mediates cytotoxic effects, this protein can be used as a therapeutic target and a clinical biomarker of NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Cirrose Hepática/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo
3.
Biomed Pharmacother ; 147: 112671, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35104697

RESUMO

When peripheral neuropathy occurs due to chemotherapy treatment, it is referred to as chemotherapy-induced peripheral neuropathy (CIPN). Typically, symptoms are sensory rather than motor and include reduced feeling and heightened sensitivity to pressure, pain, temperature, and touch. The pathophysiology of CIPN is very complex, and it involves multiple mechanisms leading to its development which will be described specifically for each chemotherapeutic class. There are currently no approved or effective agents for CIPN prevention, and Duloxetine is the only medication that is an effective treatment against CIPN. There is an unavoidable necessity to develop preventative and treatment approaches for CIPN due to its detrimental impact on patients' lives. The purpose of this review is to examine CIPN, innovative pharmacological and nonpharmacological therapy and preventive strategies for this illness, and future perspectives for this condition and its therapies.


Assuntos
Antineoplásicos/efeitos adversos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/terapia , Analgésicos/uso terapêutico , Antioxidantes/uso terapêutico , Terapias Complementares , Humanos , Fármacos Neuroprotetores/uso terapêutico , Gravidade do Paciente , Doenças do Sistema Nervoso Periférico/diagnóstico , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Fatores de Risco , Inibidores da Recaptação de Serotonina e Norepinefrina/uso terapêutico , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico
4.
Biomed Pharmacother ; 146: 112503, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34922113

RESUMO

Cancer is the second most common cause of death in the United States and is a challenging disease to treat. The treatment options for various cancers include but are not limited to surgery, radiation, and chemotherapy. The mechanism behind chemotherapy is intended to promote cellular damage to cells that are proliferating uncontrollably. Unfortunately for the recipients, most chemotherapeutic agents cannot differentiate between malignant cells and healthy cells and tissues. Thus, chemotherapy-induced toxicities are often observed in once-healthy organs. These effects can be acute and self-limiting or chronic, appearing long after chemotherapy is completed. Cancer survivors can then present for non-cancer related surgeries later in life, due to this toxicity. Furthermore, the administration of chemotherapeutic agents can profoundly impact the anesthetic management of patients who are undergoing surgery. This review discusses how chemotherapy-induced organ toxicity can occur in multiple organ systems and what drugs should be avoided if prior toxicity exists in these organ systems.


Assuntos
Antineoplásicos/efeitos adversos , Insuficiência de Múltiplos Órgãos/induzido quimicamente , Insuficiência de Múltiplos Órgãos/patologia , Neoplasias/tratamento farmacológico , Assistência Perioperatória/métodos , Anestesia/métodos , Anestésicos/uso terapêutico , Antineoplásicos/uso terapêutico , Protocolos Clínicos , Humanos , Insuficiência de Múltiplos Órgãos/prevenção & controle , Dor Pós-Operatória/tratamento farmacológico , Procedimentos Cirúrgicos Operatórios/métodos
5.
J Am Heart Assoc ; 10(17): e015868, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34472367

RESUMO

Background Stress has emerged as an important risk factor for heart disease in women. Stress levels have been shown to correlate with delayed recovery and increased mortality after a myocardial infarction. Therefore, we sought to investigate if the observed sex-specific effects of stress in myocardial infarction may be partly attributed to genomic interactions between the female sex hormones, estrogen (E2), and the primary stress hormones glucocorticoids. Methods and Results Genomewide studies show that glucocorticoids inhibit estrogen-mediated regulation of genes with established roles in cardiomyocyte homeostasis. These include 5-HT2BR (cardiac serotonin receptor 2B), the expression of which is critical to prevent cardiomyocyte death in the adult heart. Using siRNA, gene expression, and chromatin immunoprecipitation assays, we found that 5-HT2BR is a primary target of the glucocorticoid receptor and the estrogen receptor α at the level of transcription. The glucocorticoid receptor blocks the recruitment of estrogen receptor α to the promoter of the 5-HT2BR gene, which may contribute to the adverse effects of stress in the heart of premenopausal women. Using immunoblotting, TUNEL (terminal deoxynucleotidal transferase-mediated biotin-deoxyuridine triphosphate nick-end labeling), and flow cytometry, we demonstrate that estrogen decreases cardiomyocyte death by a mechanism relying on 5-HT2BR expression. In vitro and in vivo experiments show that glucocorticoids inhibit estrogen cardioprotection in response to hypoxia/reoxygenation injury and exacerbate the size of the infarct areas in myocardial infarction. Conclusions These results established a novel mechanism underlying the deleterious effects of stress on female cardiac health in the setting of ischemia/reperfusion.


Assuntos
Estrogênios/metabolismo , Glucocorticoides , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Receptor 5-HT2B de Serotonina , Apoptose , Morte Celular , Receptor alfa de Estrogênio , Feminino , Glucocorticoides/farmacologia , Humanos , Hipóxia , Masculino , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos , Receptores de Glucocorticoides/genética
6.
BMC Neurosci ; 17(1): 69, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27793099

RESUMO

BACKGROUND: Fused in sarcoma (FUS) is an RNA-binding protein associated with the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. ALS manifests in patients as a progressive paralysis which leads to respiratory dysfunction and failure, the primary cause of death in ALS. We expressed human FUS in rats to determine if FUS would induce ALS relevant respiratory changes to serve as an early stage disease indicator. The FUS expression was initiated in adult rats by way of an intravenously administered adeno-associated virus vector serotype 9 (AAV9) providing an adult onset model. RESULTS: The rats developed progressive motor impairments observed as early as 2-3 weeks post gene transfer. Respiratory abnormalities manifested 4-7 weeks post gene transfer including increased respiratory frequency and decreased tidal volume. Rats with breathing abnormalities also had arterial blood acidosis. Similar detailed plethysmographic changes were found in adult rats injected with AAV9 TDP-43. FUS gene transfer to adult rats yielded a consistent pre-clinical model with relevant motor paralysis in the early to middle stages and respiratory dysfunction at the end stage. Both FUS and TDP-43 yielded a similar consistent disease state. CONCLUSIONS: This modeling method yields disease relevant motor and respiratory changes in adult rats. The reproducibility of the data supports the use of this method to study other disease related genes and their combinations as well as a platform for disease modifying interventional strategies.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Modelos Animais de Doenças , Proteína FUS de Ligação a RNA/metabolismo , Transtornos Respiratórios/fisiopatologia , Acidose/fisiopatologia , Esclerose Lateral Amiotrófica/complicações , Animais , Dependovirus/genética , Progressão da Doença , Reação de Fuga/fisiologia , Feminino , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Hipóxia/fisiopatologia , Atividade Motora/fisiologia , Força Muscular/fisiologia , Paralisia/fisiopatologia , Proteína FUS de Ligação a RNA/genética , Ratos Sprague-Dawley , Respiração , Transtornos Respiratórios/etiologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA