RESUMO
Traditional folk treatments for the prevention and management of urinary tract infections (UTIs) and other infectious diseases often include plants and plant extracts that are rich in phenolic compounds. These have been ascribed a variety of activities, including inhibition of bacterial interactions with host cells. Here, we tested a panel of four well-studied phenolic compounds-caffeic acid phenethyl ester (CAPE), resveratrol, catechin, and epigallocatechin gallate-for the effects on host cell adherence and invasion by uropathogenic Escherichia coli (UPEC). These bacteria, which are the leading cause of UTIs, can bind and subsequently invade bladder epithelial cells via an actin-dependent process. Intracellular UPEC reservoirs within the bladder are often protected from antibiotics and host defenses and likely contribute to the development of chronic and recurrent infections. In cell culture-based assays, only resveratrol had a notable negative effect on UPEC adherence to bladder cells. However, both CAPE and resveratrol significantly inhibited UPEC entry into the host cells, coordinate with attenuated phosphorylation of the host actin regulator Focal Adhesion Kinase (FAK or PTK2) and marked increases in the numbers of focal adhesion structures. We further show that the intravesical delivery of resveratrol inhibits UPEC infiltration of the bladder mucosa in a murine UTI model and that resveratrol and CAPE can disrupt the ability of other invasive pathogens to enter host cells. Together, these results highlight the therapeutic potential of molecules like CAPE and resveratrol, which could be used to augment antibiotic treatments by restricting pathogen access to protective intracellular niches.IMPORTANCEUrinary tract infections (UTIs) are exceptionally common and increasingly difficult to treat due to the ongoing rise and spread of antibiotic-resistant pathogens. Furthermore, the primary cause of UTIs, uropathogenic Escherichia coli (UPEC), can avoid antibiotic exposure and many host defenses by invading the epithelial cells that line the bladder surface. Here, we identified two plant-derived phenolic compounds that disrupt activation of the host machinery needed for UPEC entry into bladder cells. One of these compounds, resveratrol, effectively inhibited UPEC invasion of the bladder mucosa in a mouse UTI model, and both phenolic compounds significantly reduced host cell entry by other invasive pathogens. These findings suggest that select phenolic compounds could be used to supplement existing antibacterial therapeutics by denying uropathogens shelter within host cells and tissues and help explain some of the benefits attributed to traditional plant-based medicines.
Assuntos
Infecções por Escherichia coli , Quinase 1 de Adesão Focal , Fenóis , Extratos Vegetais , Infecções Urinárias , Escherichia coli Uropatogênica , Animais , Feminino , Humanos , Camundongos , Aderência Bacteriana/efeitos dos fármacos , Ácidos Cafeicos/farmacologia , Catequina/farmacologia , Catequina/análogos & derivados , Linhagem Celular , Células Epiteliais/microbiologia , Células Epiteliais/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Quinase 1 de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/antagonistas & inibidores , Fenóis/farmacologia , Álcool Feniletílico/análogos & derivados , Extratos Vegetais/farmacologia , Resveratrol/farmacologia , Bexiga Urinária/microbiologia , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/patologia , Infecções Urinárias/microbiologia , Infecções Urinárias/tratamento farmacológico , Escherichia coli Uropatogênica/efeitos dos fármacosRESUMO
Traditional folk treatments for the prevention and management of urinary tract infections (UTIs) and other infectious diseases often include plants and plant extracts that are rich in phenolic and polyphenolic compounds. These have been ascribed a variety of activities, including inhibition of bacterial interactions with host cells. Here we tested a panel of four well-studied phenolic compounds - caffeic acid phenethyl ester (CAPE), resveratrol, catechin, and epigallocatechin gallate - for effects on host cell adherence and invasion by uropathogenic Escherichia coli (UPEC). These bacteria, which are the leading cause of UTIs, can bind and subsequently invade bladder epithelial cells via an actin-dependent process. Intracellular UPEC reservoirs within the bladder are often protected from antibiotics and host defenses, and likely contribute to the development of chronic and recurrent infections. Using cell culture-based assays, we found that only resveratrol had a notable negative effect on UPEC adherence to bladder cells. However, both CAPE and resveratrol significantly inhibited UPEC entry into the host cells, coordinate with attenuated phosphorylation of the host actin regulator Focal Adhesion Kinase (FAK, or PTK2) and marked increases in the numbers of focal adhesion structures. We further show that the intravesical delivery of resveratrol inhibits UPEC infiltration of the bladder mucosa in a murine UTI model, and that resveratrol and CAPE can disrupt the ability of other invasive pathogens to enter host cells. Together, these results highlight the therapeutic potential of molecules like CAPE and resveratrol, which could be used to augment antibiotic treatments by restricting pathogen access to protective intracellular niches.
RESUMO
Strains of uropathogenic Escherichia coli (UPEC) are the primary cause of urinary tract infections, representing one of the most widespread and successful groups of pathogens on the planet. To colonize and persist within the urinary tract, UPEC must be able to sense and respond appropriately to environmental stresses, many of which can compromise the bacterial envelope. The Cpx two-component envelope stress response system is comprised of the inner membrane histidine kinase CpxA, the cytosolic response regulator CpxR, and the periplasmic auxiliary factor CpxP. Here, by using deletion mutants along with mouse and zebrafish infection models, we show that the Cpx system is critical to the fitness and virulence of two reference UPEC strains, the cystitis isolate UTI89 and the urosepsis isolate CFT073. Specifically, deletion of the cpxRA operon impaired the ability of UTI89 to colonize the murine bladder and greatly reduced the virulence of CFT073 during both systemic and localized infections within zebrafish embryos. These defects coincided with diminished host cell invasion by UTI89 and increased sensitivity of both strains to complement-mediated killing and the aminoglycoside antibiotic amikacin. Results obtained with the cpxP deletion mutants were more complicated, indicating variable strain-dependent and niche-specific requirements for this well-conserved auxiliary factor.
Assuntos
Proteínas de Escherichia coli/fisiologia , Escherichia coli Uropatogênica/patogenicidade , Amicacina/farmacologia , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/fisiologia , Modelos Animais de Doenças , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Proteínas de Membrana/fisiologia , Camundongos , Óperon , Proteínas Quinases/fisiologia , Transdução de Sinais/fisiologia , Bexiga Urinária/microbiologia , Escherichia coli Uropatogênica/efeitos dos fármacos , Peixe-ZebraRESUMO
Uropathogenic Escherichia coli (UPEC), which are the leading cause of both acute and chronic urinary tract infections, often secrete a labile pore-forming toxin known as α-hemolysin (HlyA). We show that stable insertion of HlyA into epithelial cell and macrophage membranes triggers degradation of the cytoskeletal scaffolding protein paxillin and other host regulatory proteins, as well as components of the proinflammatory NFκB signaling cascade. Proteolysis of these factors requires host serine proteases, and paxillin degradation specifically involves the serine protease mesotrypsin. The induced activation of mesotrypsin by HlyA is preceded by redistribution of mesotrypsin precursors from the cytosol into foci along microtubules and within nuclei. HlyA intoxication also stimulated caspase activation, which occurred independently of effects on host serine proteases. HlyA-induced proteolysis of host proteins likely allows UPEC to not only modulate epithelial cell functions, but also disable macrophages and suppress inflammatory responses.
Assuntos
Adesão Celular , Proteínas de Escherichia coli/toxicidade , Proteínas Hemolisinas/toxicidade , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Serina Proteases/metabolismo , Transdução de Sinais , Escherichia coli Uropatogênica/patogenicidade , Animais , Linhagem Celular , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Proteínas de Escherichia coli/metabolismo , Proteínas Hemolisinas/metabolismo , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Paxilina/metabolismo , ProteóliseRESUMO
BACKGROUND: Type II secretion systems (T2SS) and the evolutionarily related type IV pili (T4P) are important virulence determinants in many Gram-negative bacterial pathogens. However, the roles of T2SS and T4P in the virulence of extraintestinal pathogenic Escherichia coli have not been determined. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the functions of putative T2SS and T4P gene clusters present in the model uropathogenic E. coli (UPEC) strains UTI89 and CFT073, we deleted the secretin gene present in each cluster. The secretin forms a channel in the outer membrane that is essential for the function of T2S and T4P systems. We compared the secretin deletion mutants with their wild type counterparts using tissue culture assays and the CBA/J mouse model of ascending urinary tract infection. No deficiencies were observed with any of the mutants in adherence, invasion or replication in human bladder or kidney cell lines, but UTI89 DeltahofQ and UTI89 DeltagspD exhibited approximately 2-fold defects in fluxing out of bladder epithelial cells. In the mouse infection model, each of the knockout mutants was able to establish successful infections in the bladder and kidneys by day one post-infection. However, UTI89 DeltahofQ and a CFT073 DeltahofQ DeltayheF double mutant both exhibited defects in colonizing the kidneys by day seven post-infection. CONCLUSIONS/SIGNIFICANCE: Based on our results, we propose that the putative T4P and T2S systems are virulence determinants of UPEC important for persistence in the urinary tract, particularly in renal tissues.
Assuntos
Infecções por Escherichia coli/microbiologia , Escherichia coli/genética , Escherichia coli/patogenicidade , Secretina/fisiologia , Infecções Urinárias/microbiologia , Virulência , Animais , Células Cultivadas , Testes Imunológicos de Citotoxicidade , Escherichia coli/crescimento & desenvolvimento , Feminino , Humanos , Interleucina-6/metabolismo , Rim/citologia , Rim/metabolismo , Rim/microbiologia , Camundongos , Camundongos Endogâmicos CBA , Camundongos Knockout , Fenótipo , Bexiga Urinária/citologia , Bexiga Urinária/metabolismo , Bexiga Urinária/microbiologiaRESUMO
The FimH adhesin, localized at the distal tips of type 1 pili, binds mannose-containing glycoprotein receptors like alpha3beta1 integrins and stimulates bacterial entry into target host cells. Strains of uropathogenic Escherichia coli (UPEC), the major cause of urinary tract infections, utilize FimH to invade bladder epithelial cells. Here we set out to define the mechanism by which UPEC enters host cells by investigating four of the major entry routes known to be exploited by invasive pathogens: caveolae, clathrin, macropinocytosis and secretory lysosomes. Using pharmacological inhibitors in combination with RNA interference against specific endocytic pathway components, mutant host cell lines and a mouse infection model system, we found that type 1 pili-dependent bacterial invasion of host cells occurs via a cholesterol- and dynamin-dependent phagocytosis-like mechanism. This process did not require caveolae or secretory lysosomes, but was modulated by calcium levels, clathrin, and cooperative input from the primary clathrin adaptor AP-2 and a subset of alternate adaptors comprised of Numb, ARH and Dab2. These alternate clathrin adaptors recognize NPXY motifs, as found within the cytosolic tail of beta1 integrin, suggesting a functional link between the engagement of integrin receptors by FimH and the clathrin-dependent uptake of type 1-piliated bacteria.
Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Adesinas de Escherichia coli/metabolismo , Clatrina/metabolismo , Endocitose , Células Epiteliais/microbiologia , Escherichia coli/fisiologia , Proteínas de Fímbrias/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Linhagem Celular , Inativação Gênica , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Supressoras de Tumor , Infecções Urinárias/microbiologiaRESUMO
Uropathogenic Escherichia coli (UPEC) are the major cause of urinary tract infections (UTIs), and they have the capacity to induce the death and exfoliation of target uroepithelial cells. This process can be facilitated by the pore-forming toxin alpha-hemolysin (HlyA), which is expressed and secreted by many UPEC isolates. Here, we demonstrate that HlyA can potently inhibit activation of Akt (protein kinase B), a key regulator of host cell survival, inflammatory responses, proliferation, and metabolism. HlyA ablates Akt activation via an extracellular calcium-dependent, potassium-independent process requiring HlyA insertion into the host plasma membrane and subsequent pore formation. Inhibitor studies indicate that Akt inactivation by HlyA involves aberrant stimulation of host protein phosphatases. We found that two other bacterial pore-forming toxins (aerolysin from Aeromonas species and alpha-toxin from Staphylococcus aureus) can also markedly attenuate Akt activation in a dose-dependent manner. These data suggest a novel mechanism by which sublytic concentrations of HlyA and other pore-forming toxins can modulate host cell survival and inflammatory pathways during the course of a bacterial infection.