Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39201533

RESUMO

The identification of specialized metabolites isolated from microorganisms is urgently needed to determine their roles in treating cancer and controlling multidrug-resistant pathogens. Naphthoquinones act as anticancer agents in various types of cancers, but some toxicity indicators have been limited in their appropriate application. In this context, new isofuranonaphthoquinones (ifnq) that are less toxic to humans could be promising lead compounds for developing anticancer drugs. The aim of this study is to identify and characterize novel furanonaphthoquinones (fnqs) from Nocardia sp. CS682 and to evaluate their potential therapeutic applications. Analysis of the genome of Nocardia sp. CS682 revealed the presence of a furanonaphthoquinone (fnq) gene cluster, which displays a similar genetic organization and high nucleotide sequence identity to the ifnq gene cluster from Streptomyces sp. RI-77, a producer of the naphthoquinones JBIR-76 and JBIR-77. In this study, the overexpression of the Streptomyces antibiotic regulatory protein (SARP) in Nocardia sp. CS682DR (nargenicin gene-deleted mutant) explicitly produced new fnqs, namely, NOC-IBR1 and NOC-IBR2. Subsequently, the role of the SARP regulator was confirmed by gene inactivation using CRISPR-Cas9 and complementation studies. Furthermore, antioxidant, antimicrobial, and cytotoxicity assays were performed for the isolated compounds, and it was found that NOC-IBR2 exhibited superior activities to NOC-IBR1. In addition, a flexible methyltransferase substrate, ThnM3, was found to be involved in terminal methylation of NOC-IBR1, which was confirmed by in vitro enzyme assays. Thus, this study supports the importance of genome mining and genome editing approaches for exploring new specialized metabolites in a rare actinomycete called Nocardia.


Assuntos
Genoma Bacteriano , Família Multigênica , Naftoquinonas , Nocardia , Naftoquinonas/farmacologia , Naftoquinonas/química , Nocardia/genética , Nocardia/metabolismo , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química
2.
Org Lett ; 26(7): 1321-1325, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38330916

RESUMO

Dolastatin 10, a potent tubulin-targeting marine anticancer natural product, provided the basis for the development of six FDA-approved antibody-drug conjugates. Through the screening of cyanobacterial Caldora penicillata environmental DNA libraries and metagenome sequencing, we identified its biosynthetic gene cluster. Functional prediction of 10 enzymes encoded in the 39 kb cluster supports the dolastatin 10 biosynthesis. The nonheme diiron monooxygenase DolJ was biochemically characterized to mediate the terminal thiazole formation in dolastatin 10.


Assuntos
Antineoplásicos , Cianobactérias , Depsipeptídeos , Neoplasias , Oligopeptídeos/química , Depsipeptídeos/farmacologia , Depsipeptídeos/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Cianobactérias/química
3.
Biotechnol Bioeng ; 120(12): 3465-3492, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37691185

RESUMO

Cytochrome P450s belong to a family of heme-binding monooxygenases, which catalyze regio- and stereospecific functionalisation of C-H, C-C, and C-N bonds, including heteroatom oxidation, oxidative C-C bond cleavages, and nitrene transfer. P450s are considered useful biocatalysts for the production of pharmaceutical products, fine chemicals, and bioremediating agents. Despite having tremendous biotechnological potential, being heme-monooxygenases, P450s require either autologous or heterologous redox partner(s) to perform chemical transformations. Randomly distributed P450s throughout a bacterial genome and devoid of particular redox partners in natural products biosynthetic gene clusters (BGCs) showed an extra challenge to reveal their pharmaceutical potential. However, continuous efforts have been made to understand their involvement in antibiotic biosynthesis and their modification, and this review focused on such BGCs. Here, particularly, we have discussed the role of P450s involved in the production of macrolides and aminocoumarin antibiotics, nonribosomal peptide (NRPSs) antibiotics, ribosomally synthesized and post-translationally modified peptide (RiPPs) antibiotics, and others. Several reactions catalyzed by P450s, as well as the role of their redox partners involved in the BGCs of various antibiotics and their derivatives, have been primarily addressed in this review, which would be useful in further exploration of P450s for the biosynthesis of new therapeutics.


Assuntos
Sistema Enzimático do Citocromo P-450 , Heme , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredução , Biocatálise , Peptídeos
4.
Org Lett ; 25(13): 2238-2242, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36961224

RESUMO

A polyketide synthase subcluster of cytotoxic apratoxin A was isolated from a Moorena bouillonii environmental DNA library and engineered with a thioesterase II domain for heterologous expression in the filamentous cyanobacterium Anabaena sp. PCC7120. Further engineering with a rhamnose-inducible promoter led to the production of (2R,3R,5R,7R)-3,7-dihydroxy-2,5,8,8-tetramethylnonanoic acid, a stereogenically rich chiral building block that is important to the efficient synthesis of apratoxin analogues, representing the first synthetic biology attempt for this type of polyketide fragment.


Assuntos
Anabaena , Antineoplásicos , Policetídeos , Antineoplásicos/farmacologia , Policetídeo Sintases/genética , Anabaena/genética
5.
J Nat Prod ; 86(1): 85-93, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36546857

RESUMO

Lyngbyastatins (Lbns) 1 (1) and 3 (2) belong to a group of cyclic depsipeptides that inhibit cancer cell proliferation. These compounds have been isolated from different marine cyanobacterial collections, while further development of these compounds relies on their lengthy total synthesis. Biosynthetic studies of these compounds can provide viable strategies to access these compounds and develop new analogs. In this study, we report the identification and characterization of one Lbn biosynthetic gene cluster (BGC) from the marine cyanobacterium Okeania sp. VPG18-21. We initially identified 1 and 2 in the organic extract by mass spectrometry and performed the targeted isolation of these compounds, which feature a (2S,3R)-3-amino-2-methylpentanoic acid (MAP) and a (2S,3R)-3-amino-2-methylhexanoic acid (Amha) moiety, respectively. Parallel metagenomic sequencing of VPG18-21 led to the identification of a putative Lbn BGC that encodes six megaenzymes (LbnA-F), including one polyketide synthase (PKS, LbnE), four nonribosomal peptide synthetases (NRPSs, LbnB-D and -F), and one PKS-NRPS hybrid (LbnA). Bioinformatic analysis of these enzymes suggested that the BGC produces 1 and 2. Furthermore, our biochemical studies of three recombinant adenylation domains uncovered their substrate specificities, supporting the identity of the BGC. Finally, we identified near-complete Lbn-like BGCs in the genomes of two other marine cyanobacteria.


Assuntos
Antineoplásicos , Cianobactérias , Depsipeptídeos , Neoplasias , Humanos , Antineoplásicos/farmacologia , Cianobactérias/química , Depsipeptídeos/química , Policetídeo Sintases/genética , Peptídeo Sintases/genética , Família Multigênica
6.
Molecules ; 27(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36080320

RESUMO

Anthraquinone and its derivatives show remarkable biological properties such as anticancer, antibacterial, antifungal, and antiviral activities. Hence, anthraquinones derivatives have been of prime interest in drug development. This study developed a recombinant Escherichia coli strain to modify chrysazin to chrysazin-8-O-α-l-rhamnoside (CR) and chrysazin-8-O-α-l-2'-O-methylrhamnoside (CRM) using rhamnosyl transferase and sugar-O-methyltransferase. Biosynthesized CR and CRM were structurally characterized using HPLC, high-resolution mass spectrometry, and various nuclear magnetic resonance analyses. Antimicrobial effects of chrysazin, CR, and CRM against 18 superbugs, including 14 Gram-positive and 4 Gram-negative pathogens, were investigated. CR and CRM exhibited antimicrobial activities against nine pathogens, including methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA) in a disk diffusion assay at a concentration of 40 µg per disk. There were MIC and MBC values of 7.81−31.25 µg/mL for CR and CRM against methicillin-sensitive S. aureus CCARM 0205 (MSSA) for which the parent chrysazin is more than >1000 µg/mL. Furthermore, the anti-proliferative properties of chrysazin, CR, and CRM were assayed using AGS, Huh7, HL60, and HaCaT cell lines. CR and CRM showed higher antibacterial and anticancer properties than chrysazin.


Assuntos
Infecções por Escherichia coli , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antraquinonas/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli , Humanos , Meticilina/farmacologia , Testes de Sensibilidade Microbiana , Staphylococcus aureus
7.
Appl Environ Microbiol ; 88(13): e0075422, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35703553

RESUMO

Methyltransferases transfer a methyl group to a diverse group of natural products, thus providing structural diversity, stability, and altered pharmacological properties to the molecules. A limited number of regiospecific sugar-O-methyltransferases are functionally characterized. Thus, discovery of such an enzyme could solve the difficulties of biological production of methoxy derivatives of glycosylated molecules. In the current study, a regiospecific sugar-O-methyltransferase, ThnM1, belonging to the biosynthetic gene cluster (BGC) of 1-(α-L-(2-O-methyl)-6-deoxymannopyranosyloxy)-3,6,8-trimethoxynaphthalene produced by Nocardia sp. strain CS682, was analyzed and functionally characterized. ThnM1 demonstrated promiscuity to diverse chemical structures such as rhamnose-containing anthraquinones and flavonoids with regiospecific methylation at the 2'-hydroxyl group of the sugar moiety. Compared with other compounds, anthraquinone rhamnosides were found to be the preferred substrates for methylation. Thus, the enzyme was further employed for whole-cell biotransformation using engineered Escherichia coli to produce a methoxy-rhamnosyl derivative of quinizarin, an anthraquinone derivative. The structure of the newly generated derivative from Escherichia coli fermentation was elucidated by liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopic analyses and identified as quinizarin-4-O-α-l-2-O-methylrhamnoside (QRM). Further, the biological impact of methylation was studied by comparing the cytotoxicity of QRM with that of quinizarin against the U87MG, SNU-1, and A375SM cancer cell lines. IMPORTANCE ThnM1 is a putative sugar-O-methyltransferase produced by the Nocardia sp. strain CS682 and is encoded by a gene belonging to the biosynthetic gene cluster (BGC) of 1-(α-l-(2-O-methyl)-6-deoxymannopyranosyloxy)-3,6,8-trimethoxynaphthalene. We demonstrated that ThnM1 is a promiscuous enzyme with regiospecific activity at the 2'-OH of rhamnose. As regiospecific methylation of sugars by chemical synthesis is a challenging step, ThnM1 may fill the gap in the potential diversification of natural products by methylating the rhamnose moiety attached to them.


Assuntos
Produtos Biológicos , Nocardia , Produtos Biológicos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Metiltransferases/metabolismo , Nocardia/genética , Nocardia/metabolismo , Ramnose/metabolismo , Açúcares/metabolismo
8.
Biotechnol Appl Biochem ; 69(4): 1723-1732, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34415071

RESUMO

Epothilone A, a microtubule-stabilizing agent used as therapeutics for the treatment of cancers, was biotransformed into three metabolites using Nocardia sp. CS692 and recombinant Nocardia overexpressing a cytochrome P450 from Streptomyces venezuelae (PikC). Among three metabolites produced in the biotransformation reaction mixtures, ESI/MS2 analysis predicted two metabolites (M1 and M2) as novel hydroxylated derivatives (M1 is hydroxylated at the C-8 position and M2 is hydroxylated at C-10 position), each with an opened-epoxide ring in their structure. Interestingly, metabolite M3 lacks an epoxide ring and is known as deoxyepothilone A, which is also called epothilone C. Metabolite M1 was produced only in PikC overexpressing strain. The endogenous enzymes of Nocardia sp. catalyzed hydroxylation of epothilone A to produce metabolite M2 and removed epoxide ring to produce metabolite M3. All the metabolites were identified based on UV-vis analysis and rigorous ESI/MS2 fragmentation based on epothilone A standard. The newly produced metabolites are anticipated to display novel cytotoxic effects and could be subjects of further pharmacological studies.


Assuntos
Nocardia , Biotransformação , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Epotilonas , Compostos de Epóxi , Humanos , Nocardia/genética , Nocardia/metabolismo
9.
RSC Adv ; 11(5): 3168-3173, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35424263

RESUMO

Streptomyces peucetius produces doxorubicin and daunorubicin, which are important anticancer drugs. In this study, we activate peucemycin, a new antibacterial compound, using an OSMAC strategy. In general, bioactive compounds are produced in a higher amount at room temperature; however, in this study, we have demonstrated that a bioactive novel compound was successfully activated at a low temperature (18 °C) in S. peucetius DM07. Through LC-MS/MS, IR spectroscopy, and NMR analysis, we identified the structure of this compound as a γ-pyrone macrolide. This compound was found to be novel, thus named peucemycin. It is an unusual 14-membered macrocyclic γ-pyrone ring with cyclization. Also, peucemycin exhibits potential antibacterial activity and a suppressive effect on the viability of various cancer cell lines.

10.
Biotechnol Appl Biochem ; 68(3): 531-537, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32430989

RESUMO

Tamarixetin, a monomethylated derivative of quercetin, has been reported to possess many important biological activities. In the present study, a whole cell biotransformation system was used for regiospecific methylation of quercetin to produce 4'-O-methylated quercetin (tamarixetin) using methyltransferase from Streptomyces sp. KCTC 0041BP in Escherichia coli Bl21 (DE3). Its production was enhanced by adding a plasmid containing S-adenosine-l-methionine (SAM) synthase from E. coli K12 (MetK) with subsequent feeding of l-methionine and glycerol in the culture. The best condition produced ∼279 µM (88.2 mg/L) of tamarixetin. The biological activity of tamarixetin was tested and compared with quercetin, 7-O-methylated quercetin, and 3-O-methylated quercetin. Results showed that the growth of all tested cancer cell lines (AGS, B16F10, C6, and HeLa) were inhibited by tamarixetin more effectively than other methylated derivatives of quercetin or quercetin. Tamarixetin also exhibited the best antimelanogenic activity among all compounds tested.


Assuntos
Antineoplásicos/metabolismo , Dissacarídeos/biossíntese , Escherichia coli/metabolismo , Metiltransferases/metabolismo , Quercetina/análogos & derivados , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Dissacarídeos/química , Dissacarídeos/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Estrutura Molecular , Quercetina/biossíntese , Quercetina/química , Quercetina/farmacologia , Células Tumorais Cultivadas
11.
Biomedicines ; 8(8)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751120

RESUMO

Targeting angiogenesis is an attractive strategy for the treatment of angiogenesis-related diseases, including cancer. We previously identified 23-demethyl 8,13-deoxynargenicin (compound 9) as a novel nargenicin A1 analog with potential anticancer activity. In this study, we investigated the antiangiogenic activity and mode of action of compound 9. This compound was found to effectively inhibit in vitro angiogenic characteristics, including the proliferation, invasion, capillary tube formation, and adhesion of human umbilical vein endothelial cells (HUVECs) stimulated by vascular endothelial growth factor (VEGF). Furthermore, compound 9 suppressed the neovascularization of the chorioallantoic membrane of growing chick embryos in vivo. Notably, the antiangiogenic properties of compound 9 were related to the downregulation of VEGF/VEGFR2-mediated downstream signaling pathways, as well as matrix metalloproteinase (MMP)-2 and MMP-9 expression in HUVECs. In addition, compound 9 was found to decrease the in vitro AGS gastric cancer cell-induced angiogenesis of HUVECs by blocking hypoxia-inducible factor-1α (HIF-1α) and VEGF expression in AGS cells. Collectively, our findings demonstrate for the first time that compound 9 is a promising antiangiogenic agent targeting both VEGF/VEGFR2 signaling in ECs and HIF-1α/VEGF pathway in tumor cells.

12.
Microorganisms ; 8(4)2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32344564

RESUMO

Streptomyces spp. are prolific sources of valuable natural products (NPs) that are of great interest in pharmaceutical industries such as antibiotics, anticancer chemotherapeutics, immunosuppressants, etc. Approximately two-thirds of all known antibiotics are produced by actinomycetes, most predominantly by Streptomyces. Nevertheless, in recent years, the chances of the discovery of novel and bioactive compounds from Streptomyces have significantly declined. The major hindrance for obtaining such bioactive compounds from Streptomyces is that most of the compounds are not produced in significant titers, or the biosynthetic gene clusters (BGCs) are cryptic. The rapid development of genome sequencing has provided access to a tremendous number of NP-BGCs embedded in the microbial genomes. In addition, the studies of metabolomics provide a portfolio of entire metabolites produced from the strain of interest. Therefore, through the integrated approaches of different-omics techniques, the connection between gene expression and metabolism can be established. Hence, in this review we summarized recent advancements in strategies for activating cryptic BGCs in Streptomyces by utilizing diverse state-of-the-art techniques.

13.
ACS Chem Biol ; 15(6): 1370-1380, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32208643

RESUMO

Nargenicin A1(1) is an antibacterial macrolide with effective activity against various Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus. Due to the promising properties of this compound in inhibiting cell proliferation, immunomodulation, and the cell protective effect, there has been significant interest in this molecule. Recently, the biosynthetic gene cluster (BGC) of 1 was reported from Nocardia argentinesis and Nocardia arthritidis. In addition, two crucial enzymes involved in the formation of the core decalin moiety and postmodification of the decalin moiety by an ether bridge were characterized. This study reports on the BGC of 1 from Nocardia sp. CS682. In addition, the direct capture and heterologous expression of nar BGC from Nocardia sp. CS682 in Streptomyces venezuelae led to the production of 1. Further metabolic profiling of wild type, Nocardia sp. CS682 in optimized media (DD media) resulted in the isolation of two acetylated derivatives, 18-O-acetyl-nodusmicin and 18-O-acetyl-nargenicin. The post-PKS modification pathway in biosynthesis of 1 was also deciphered by identifying intermediates and/or in vitro enzymatic reactions of NgnP1, NgnM, and NgnO3. Different novel analogues of 1, such as compound 6, compound 7, 23-demethyl 8,13-deoxy-nodusmicin (8), 23-demethyl 8,13-deoxynargenicin (9), 8,13-deoxynodusmicin (10), and 8,13-deoxynargenicin (11), were also characterized, which extended our understanding of key post-PKS modification steps during the biosynthesis of 1. In addition, the antimicrobial and anticancer activities of selected analogues were also evaluated, whereas compound 9 was shown to exhibit potent antitumor activity by induction of G2/M cell cycle arrest, apoptosis, and autophagy.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Vias Biossintéticas , Nocardia/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Genes Bacterianos , Humanos , Lactonas/química , Lactonas/metabolismo , Lactonas/farmacologia , Família Multigênica , Neoplasias/tratamento farmacológico , Nocardia/genética , Streptomyces/genética , Streptomyces/metabolismo
14.
Sci Rep ; 10(1): 1756, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019976

RESUMO

Streptomyces sp. VN1 was isolated from the coastal region of Phu Yen Province (central Viet Nam). Morphological, physiological, and whole genome phylogenetic analyses suggested that strain Streptomyces sp. VN1 belonged to genus Streptomyces. Whole genome sequencing analysis showed its genome was 8,341,703 base pairs in length with GC content of 72.5%. Diverse metabolites, including cinnamamide, spirotetronate antibiotic lobophorin A, diketopiperazines cyclo-L-proline-L-tyrosine, and a unique furan-type compound were isolated from Streptomyces sp. VN1. Structures of these compounds were studied by HR-Q-TOF ESI/MS/MS and 2D NMR analyses. Bioassay-guided purification yielded a furan-type compound which exhibited in vitro anticancer activity against AGS, HCT116, A375M, U87MG, and A549 cell lines with IC50 values of 40.5, 123.7, 84.67, 50, and 58.64 µM, respectively. In silico genome analysis of the isolated Streptomyces sp. VN1 contained 34 gene clusters responsible for the biosynthesis of known and/or novel secondary metabolites, including different types of terpene, T1PKS, T2PKS, T3PKS, NRPS, and hybrid PKS-NRPS. Genome mining with HR-Q-TOF ESI/MS/MS analysis of the crude extract confirmed the biosynthesis of lobophorin analogs. This study indicates that Streptomyces sp. VN1 is a promising strain for biosynthesis of novel natural products.


Assuntos
Antineoplásicos/metabolismo , Produtos Biológicos/metabolismo , Furanos/metabolismo , Streptomyces/metabolismo , Células A549 , Antibacterianos/metabolismo , Bioensaio/métodos , Linhagem Celular Tumoral , Genoma Bacteriano/genética , Células HCT116 , Humanos , Família Multigênica/genética , Filogenia , Streptomyces/genética
15.
Front Chem ; 7: 604, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552222

RESUMO

Cyanobacteria, are only Gram-negative bacteria with the capacity of oxygenic photosynthesis, so termed as "Cyanophyta" or "blue-green algae." Their habitat is ubiquitous, which includes the diverse environments, such as soil, water, rock and other organisms (symbiosis, commensalism, or parasitism, etc.,). They are characterized as prominent producers of numerous types of important compounds with anti-microbial, anti-viral, anti-inflammatory and anti-tumor properties. Among the various cyanobacterial genera, members belonging to genera Nostoc, Lyngbya, and Microcystis possess greater attention. The major reason for that is the strains belonging to these genera produce the compounds with diverse activities/structures, including compounds in preclinical and/or clinical trials (cryptophycin and curacin), or the compounds retaining unique activities such as protease inhibitor (micropeptins and aeruginosins). Most of these compounds were tested for their efficacy and mechanism of action(MOA) through in vitro and/or in vivo studies. Recently, the advances in culture techniques of these cyanobacteria, and isolation, purification, and chromatographic analysis of their compounds have revealed insurmountable novel bioactive compounds from these cyanobacteria. This review provides comprehensive update on the origin, isolation and purification methods, chemical structures and biological activities of the major compounds from Nostoc, Lyngbya, and Microcystis. In addition, multi-omics approaches and biotechnological production of compounds from selected cyanobacterial genera have been discussed.

16.
Microb Cell Fact ; 18(1): 137, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409353

RESUMO

Actinobacteria are characterized as the most prominent producer of natural products (NPs) with pharmaceutical importance. The production of NPs from these actinobacteria is associated with particular biosynthetic gene clusters (BGCs) in these microorganisms. The majority of these BGCs include polyketide synthase (PKS) or non-ribosomal peptide synthase (NRPS) or a combination of both PKS and NRPS. Macrolides compounds contain a core macro-lactone ring (aglycone) decorated with diverse functional groups in their chemical structures. The aglycon is generated by megaenzyme polyketide synthases (PKSs) from diverse acyl-CoA as precursor substrates. Further, post-PKS enzymes are responsible for allocating the structural diversity and functional characteristics for their biological activities. Macrolides are biologically important for their uses in therapeutics as antibiotics, anti-tumor agents, immunosuppressants, anti-parasites and many more. Thus, precise genetic/metabolic engineering of actinobacteria along with the application of various chemical/biological approaches have made it plausible for production of macrolides in industrial scale or generation of their novel derivatives with more effective biological properties. In this review, we have discussed versatile approaches for generating a wide range of macrolide structures by engineering the PKS and post-PKS cascades at either enzyme or cellular level in actinobacteria species, either the native or heterologous producer strains.


Assuntos
Actinobacteria/enzimologia , Actinobacteria/genética , Macrolídeos/metabolismo , Policetídeos/metabolismo , Produtos Biológicos/metabolismo , Engenharia Genética , Família Multigênica , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo
17.
Molecules ; 24(2)2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30634706

RESUMO

Nargenicin A1 is major secondary metabolite produced by Nocardia sp. CS682, with an effective antibacterial activity against various Gram-positive bacteria. Most Nocardia spp. have metabolic ability to produce compounds of diverse nature, so one-strain-many-compounds (OSMAC) approach can be applied for obtaining versatile compounds from these strains. In this study, we characterized a novel 1, 3, 6, 8-tetrahydroxynaphthalene (THN) derivative by metabolic engineering approach leading to the inactivation of nargenicin A1 biosynthesis. By using genome mining, metabolite profiling, and bioinformatics, the biosynthetic gene cluster and biosynthetic mechanism were elucidated. Further, the antibacterial, anticancer, melanin formation, and UV protective properties for isolated THN compound were performed. The compound did not exhibit significant antibacterial and cytotoxic activities, but it exhibited promising UV protection effects. Thus, metabolic engineering is an effective strategy for discovering novel bioactive molecules.


Assuntos
Engenharia Metabólica/métodos , Naftóis/química , Nocardia/crescimento & desenvolvimento , Protetores contra Radiação/química , Proteínas de Bactérias/genética , Vias Biossintéticas/efeitos dos fármacos , Lactonas/metabolismo , Metabolômica , Estrutura Molecular , Naftóis/farmacologia , Nocardia/química , Nocardia/genética , Protetores contra Radiação/farmacologia , Metabolismo Secundário , Deleção de Sequência
18.
Front Microbiol ; 9: 1671, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30100899

RESUMO

Flavonoids are one of the predominant groups of plant polyphenols, and these compounds have significant effects on human health and nutrition. Sulfated flavonoids have more favorable attributes compared to their parent compounds such as increased solubility, stability, and bioavailability. In this research, we developed a microbial system to produce sulfated naringenin using Escherichia coli expressing a sulfotransferase (ST) from Arabidopsis thaliana (At2g03770). This wild-type strain was used as a model system for testing clustered regularly interspaced short palindromic repeats (CRISPR) interference (CRISPRi) metabolic engineering strategies. Using synthetic sgRNA to mediate transcriptional repression of cysH, a gene encoding 3'-phosphoadenosine-5'-phosphosulfate (PAPS) ST, which is involved in sulfur metabolism, resulted in an increase in intracellular PAPS accumulation by over 3.28-fold without impairing cell growth. Moreover, naringenin 7-sulfate production by engineering E. coli with its cysH gene repressed in the open reading frame through CRISPRi was enhanced by 2.83-fold in compared with the wild-type control. To improve the efficiency of biotransformation, the concentration of SO42- , glucose, and substrate were optimized. The bioproductivity of naringenin 7-sulfate was 135.49 µM [∼143.1 mg (47.7 mg L-1)] in a 3-L fermenter at 36 h. These results demonstrated that the CRISPRi system was successfully applied for the first time in E. coli to develop an efficient microbial strain for production of a sulfated flavonoid. In addition, antibacterial and anticancer activities of naringenin 7-sulfate were investigated and found to be higher than the parent compound.

19.
Microbiol Res ; 214: 37-46, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30031480

RESUMO

The orphan histidine kinase (HK) from Streptomyces peucetius ATCC 27952 (ohkAsp) was found to be implicated in the regulation of doxorubicin (DOX)/daunorubicin (DNR) biosynthesis, self-defense and developmental attributes. OhkAsp is a homolog of OhkA from Streptomyces coelicolor and Streptomyces avermitilis (with 73 and 75% identity). As in its homologs, S. peucetius mutant with deletion of ohkAsp was found to enhance metabolite biosynthesis and impaired the morphological differentiation. But, unlike its homologs from Streptomyces coelicolor and Streptomyces avermitilis, differential enhancement in level of secondary metabolite production was found in overexpression mutants apart from deletion mutant. The deflection in characteristics of OhkA in its homologue from S. peucetius ATCC 27952, and its imminent implications was monitered by making various mutants with differential expression level of ohkAsp. The variations were observed in the morphology of mutants, transcriptional level of effectors and regulators of DOX/DNR biosynthesis pathway, DOX/DNR precursor pool and biomass accumulation. Based on comparisons of domain arrangements among its homologs, Low Complexity Region (LCR) present on the OhkAsp was the only domain that stood out. Further, the LCR on OhkAsp was found to be overlapping with a putative receiver domain responsible for interaction with response regulator. The imminent implications of differential expression level of ohkAsp on: regulation and biosynthesis of DOX/DNR, morphological differentiation, DOX/DNR precursor pool and biomass accumulation were explored in this study.


Assuntos
Antibióticos Antineoplásicos/biossíntese , Daunorrubicina/biossíntese , Doxorrubicina/biossíntese , Histidina Quinase/metabolismo , Streptomyces/enzimologia , Streptomyces/metabolismo , Análise Mutacional de DNA , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Genótipo , Histidina Quinase/genética , Fenótipo , Streptomyces/citologia
20.
World J Microbiol Biotechnol ; 34(6): 77, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29796897

RESUMO

Azasugars, such as 1-deoxynojirymicin (1-DNJ), are associated with diverse pharmaceutical applications, such as antidiabetic, anti-obesity, anti-HIV, and antitumor properties. Different azasugars have been isolated from diverse microbial and plant sources though complicated purification steps, or generated by costly chemical synthesis processes. But the biosynthesis of such potent molecules using Escherichia coli as a heterologous host provides a broader opportunity to access these molecules, particularly by utilizing synthetic biological, metabolic engineering, and process optimization approaches. This work used an integrated approach of synthetic biology, enzyme engineering, and pathway optimization for rational metabolic engineering, leading to the improved production of 1-DNJ. The production of 1-DNJ in recombinant E. coli culture broth was confirmed by enzymatic assays and mass spectrometric analysis. Specifically, the pathway engineering for its key precursor, fructose-6-phosphate, along with optimized media condition, results in the highest production levels. When combined, 1-DNJ production was extended to ~ 273 mg/L, which is the highest titer of production of 1-DNJ reported using E. coli.


Assuntos
1-Desoxinojirimicina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica , Biologia Sintética , 1-Desoxinojirimicina/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas/genética , Clonagem Molecular , Meios de Cultura/química , DNA Bacteriano/genética , Escherichia coli/enzimologia , Escherichia coli/crescimento & desenvolvimento , Fermentação , Frutosefosfatos/metabolismo , Genes Bacterianos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA