Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 11: 1395721, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872916

RESUMO

Background: Head and Neck Squamous Cell Carcinoma (HNSCC) is the seventh most highly prevalent cancer type worldwide. Early detection of HNSCC is one of the important challenges in managing the treatment of the cancer patients. Existing techniques for detecting HNSCC are costly, expensive, and invasive in nature. Methods: In this study, we aimed to address this issue by developing classification models using machine learning and deep learning techniques, focusing on single-cell transcriptomics to distinguish between HNSCC and normal samples. Furthermore, we built models to classify HNSCC samples into HPV-positive (HPV+) and HPV-negative (HPV-) categories. In this study, we have used GSE181919 dataset, we have extracted 20 primary cancer (HNSCC) samples, and 9 normal tissues samples. The primary cancer samples contained 13 HPV- and 7 HPV+ samples. The models developed in this study have been trained on 80% of the dataset and validated on the remaining 20%. To develop an efficient model, we performed feature selection using mRMR method to shortlist a small number of genes from a plethora of genes. We also performed Gene Ontology (GO) enrichment analysis on the 100 shortlisted genes. Results: Artificial Neural Network based model trained on 100 genes outperformed the other classifiers with an AUROC of 0.91 for HNSCC classification for the validation set. The same algorithm achieved an AUROC of 0.83 for the classification of HPV+ and HPV- patients on the validation set. In GO enrichment analysis, it was found that most genes were involved in binding and catalytic activities. Conclusion: A software package has been developed in Python which allows users to identify HNSCC in patients along with their HPV status. It is available at https://webs.iiitd.edu.in/raghava/hnscpred/.

2.
Cells ; 12(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37998365

RESUMO

In metazoans, the largest sirtuin, SIRT1, is a nuclear protein implicated in epigenetic modifications, circadian signaling, DNA recombination, replication, and repair. Our previous studies have demonstrated that SIRT1 binds replication origins and inhibits replication initiation from a group of potential initiation sites (dormant origins). We studied the effects of aging and SIRT1 activity on replication origin usage and the incidence of transcription-replication collisions (creating R-loop structures) in adult human cells obtained at different time points during chronological aging and in cancer cells. In primary, untransformed cells, SIRT1 activity declined and the prevalence of R-loops rose with chronological aging. Both the reduction in SIRT1 activity and the increased abundance of R-loops were also observed during the passage of primary cells in culture. All cells, regardless of donor age or transformation status, reacted to the short-term, acute chemical inhibition of SIRT1 with the activation of excessive replication initiation events coincident with an increased prevalence of R-loops. However, cancer cells activated dormant replication origins, genome-wide, during long-term proliferation with mutated or depleted SIRT1, whereas, in primary cells, the aging-associated SIRT1-mediated activation of dormant origins was restricted to rDNA loci. These observations suggest that chronological aging and the associated decline in SIRT1 activity relax the regulatory networks that protect cells against excess replication and that the mechanisms protecting from replication-transcription collisions at the rDNA loci manifest as differentially enhanced sensitivities to SIRT1 decline and chronological aging.


Assuntos
Estruturas R-Loop , Sirtuína 1 , Humanos , DNA Ribossômico/genética , Sirtuína 1/genética , Sirtuína 1/metabolismo , Replicação do DNA/genética , Envelhecimento/genética
3.
Comput Biol Med ; 167: 107594, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37918263

RESUMO

Advancements in cancer immunotherapy have shown significant outcomes in treating cancers. To design effective immunotherapy, it's important to understand immune response of a patient based on its genomic profile. However, analyses to do that requires proficiency in the bioinformatic methods. Swiftly growing sequencing technologies and statistical methods create a blockage for the scientists who want to find the biomarkers for different cancers but don't have detailed knowledge of coding or tool. Here, we are providing a web-based resource that gives scientists with no bioinformatics expertise, the ability to obtain the prognostic biomarkers for different cancer types at different levels. We computed prognostic biomarkers from 8346 cancer patients for twenty cancer types. These biomarkers were computed based on i) presence of 352 Human leukocyte antigen class-I, ii) 660959 tumor-specific HLA1 neobinders, and iii) expression profile of 153 cytokines. It was observed that survival risk of cancer patients depends on presence of certain type of HLA-I alleles; for example, liver hepatocellular carcinoma patients with HLA-A*03:01 are at lower risk. Our analysis indicates that neobinders of HLA-I alleles have high correlation with overall survival of certain type of cancer patients. For example, HLA-B*07:02 binders have 0.49 correlation with survival of lung squamous cell carcinoma and -0.77 with kidney chromophobe patients. Additionally, we computed prognostic biomarkers based on cytokine expressions. Higher expression of few cytokines is survival favorable like IL-2 for bladder urothelial carcinoma, whereas IL-5R is survival unfavorable for kidney chromophobe patients. Freely accessible to public, CancerHLA-I maintains raw and analysed data (https://webs.iiitd.edu.in/raghava/cancerhla1/).


Assuntos
Carcinoma de Células de Transição , Neoplasias Pulmonares , Neoplasias da Bexiga Urinária , Humanos , Citocinas/genética , Alelos , Carcinoma de Células de Transição/genética , Neoplasias da Bexiga Urinária/genética , Biomarcadores , Neoplasias Pulmonares/genética , Medição de Risco
4.
Comput Biol Med ; 160: 106929, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37126926

RESUMO

Tumor Necrosis Factor alpha (TNF-α) is a pleiotropic pro-inflammatory cytokine that is crucial in controlling the signaling pathways within the immune cells. Recent studies reported that higher expression levels of TNF-α are associated with the progression of several diseases, including cancers, cytokine release syndrome in COVID-19, and autoimmune disorders. Thus, it is the need of the hour to develop immunotherapies or subunit vaccines to manage TNF-α progression in various disease conditions. In the pilot study, we proposed a host-specific in-silico tool for predicting, designing, and scanning TNF-α inducing epitopes. The prediction models were trained and validated on the experimentally validated TNF-α inducing/non-inducing epitopes from human and mouse hosts. Firstly, we developed alignment-free (machine learning based models using composition-based features of peptides) methods for predicting TNF-α inducing peptides and achieved maximum AUROC of 0.79 and 0.74 for human and mouse hosts, respectively. Secondly, an alignment-based (using BLAST) method has been used for predicting TNF-α inducing epitopes. Finally, a hybrid method (combination of alignment-free and alignment-based method) has been developed for predicting epitopes. Hybrid approach achieved maximum AUROC of 0.83 and 0.77 on an independent dataset for human and mouse hosts, respectively. We have also identified potential TNF-α inducing peptides in different proteins of HIV-1, HIV-2, SARS-CoV-2, and human insulin. The best models developed in this study has been incorporated in the webserver TNFepitope (https://webs.iiitd.edu.in/raghava/tnfepitope/), standalone package and GitLab (https://gitlab.com/raghavalab/tnfepitope).


Assuntos
COVID-19 , Fator de Necrose Tumoral alfa , Humanos , Animais , Camundongos , Epitopos , Projetos Piloto , SARS-CoV-2 , Peptídeos
5.
Methods Mol Biol ; 2673: 317-327, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258924

RESUMO

Interleukin 6 (IL6) is a major pro-inflammatory cytokine that plays a pivotal role in both innate and adaptive immune responses. In the past, a number of studies reported that high level of IL6 promotes the proliferation of cancer, autoimmune disorders, and cytokine storm in COVID-19 patients. Thus, it is extremely important to identify and remove the antigenic regions from a therapeutic protein or vaccine candidate that may induce IL6-associated immunotoxicity. In order to overcome this challenge, our group has developed a computational tool, IL6pred, for discovering IL6-inducing peptides in a vaccine candidate. The aim of this chapter is to describe the potential applications and methodology of IL6pred. It sheds light on the prediction, designing, and scanning modules of IL6pred webserver and standalone package ( https://webs.iiitd.edu.in/raghava/il6pred/ ).


Assuntos
COVID-19 , Vacinas , Humanos , Interleucina-6/genética , COVID-19/prevenção & controle , Citocinas/metabolismo , Internet
6.
Methods Mol Biol ; 2673: 329-338, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258925

RESUMO

Interleukins are a distinctive class of molecules exhibiting various immune signaling functions. Immunoregulatory cytokine, Interleukin 13 (IL13), is primarily synthesized by activated T-helper 2 cells, mast cells, and basophils. IL13, is known to stimulate many allergic and autoimmune diseases, such as asthma, rheumatoid arthritis, systemic sclerosis, ulcerative colitis, airway hyperresponsiveness, glycoprotein hypersecretion, and goblet cell hyperplasia. In addition to such disorders, IL13 also leads to carcinogenesis by inhibiting tumor immunosurveillance. Due to its role in various diseases, predicting IL13-inducing peptides or regions in a protein is vital to designing safe protein vaccines and therapeutics. IL13pred is an in silico tool which aids in identifying, predicting, and designing IL13-inducing peptides. The IL13pred web server and standalone package is easily accessible at ( https://webs.iiitd.edu.in/raghava/il13pred/ ).


Assuntos
Asma , Interleucina-13 , Humanos , Citocinas , Interleucinas , Peptídeos
7.
Front Immunol ; 14: 1056101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36742312

RESUMO

Introduction: Celiac disease (CD) is an autoimmune gastrointestinal disorder causes immune-mediated enteropathy against gluten. Gluten immunogenic peptides have the potential to trigger immune responses which leads to damage the small intestine. HLA-DQ2/DQ8 are major alleles that bind to epitope/antigenic region of gluten and induce celiac disease. There is a need to identify CD associated epitopes in protein-based foods and therapeutics. Methods: In this study, computational tools have been developed to predict CD associated epitopes and motifs. Dataset used for training, testing and evaluation contain experimentally validated CD associated and non-CD associate peptides. We perform positional analysis to identify the most significant position of an amino acid residue in the peptide and checked the frequency of HLA alleles. We also compute amino acid composition to develop machine learning based models. We also developed ensemble method that combines motif-based approach and machine learning based models. Results and Discussion: Our analysis support existing hypothesis that proline (P) and glutamine (Q) are highly abundant in CD associated peptides. A model based on density of P&Q in peptides has been developed for predicting CD associated peptides which achieve maximum AUROC 0.98 on independent data. We discovered motifs (e.g., QPF, QPQ, PYP) which occurs specifically in CD associated peptides. We also developed machine learning based models using peptide composition and achieved maximum AUROC 0.99. Finally, we developed ensemble method that combines motif-based approach and machine learning based models. The ensemble model-predict CD associated motifs with 100% accuracy on an independent dataset, not used for training. Finally, the best models and motifs has been integrated in a web server and standalone software package "CDpred". We hope this server anticipate the scientific community for the prediction, designing and scanning of CD associated peptides as well as CD associated motifs in a protein/peptide sequence (https://webs.iiitd.edu.in/raghava/cdpred/).


Assuntos
Doença Celíaca , Humanos , Epitopos , Glutens , Peptídeos , Aminoácidos
8.
J Comput Biol ; 30(2): 204-222, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36251780

RESUMO

In the last three decades, a wide range of protein features have been discovered to annotate a protein. Numerous attempts have been made to integrate these features in a software package/platform so that the user may compute a wide range of features from a single source. To complement the existing methods, we developed a method, Pfeature, for computing a wide range of protein features. Pfeature allows to compute more than 200,000 features required for predicting the overall function of a protein, residue-level annotation of a protein, and function of chemically modified peptides. It has six major modules, namely, composition, binary profiles, evolutionary information, structural features, patterns, and model building. Composition module facilitates to compute most of the existing compositional features, plus novel features. The binary profile of amino acid sequences allows to compute the fraction of each type of residue as well as its position. The evolutionary information module allows to compute evolutionary information of a protein in the form of a position-specific scoring matrix profile generated using Position-Specific Iterative Basic Local Alignment Search Tool (PSI-BLAST); fit for annotation of a protein and its residues. A structural module was developed for computing of structural features/descriptors from a tertiary structure of a protein. These features are suitable to predict the therapeutic potential of a protein containing non-natural or chemically modified residues. The model-building module allows to implement various machine learning techniques for developing classification and regression models as well as feature selection. Pfeature also allows the generation of overlapping patterns and features from a protein. A user-friendly Pfeature is available as a web server python library and stand-alone package.


Assuntos
Proteínas , Software , Proteínas/química , Peptídeos , Sequência de Aminoácidos , Aprendizado de Máquina , Bases de Dados de Proteínas , Análise de Sequência de Proteína/métodos
9.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36524996

RESUMO

There are a number of antigens that induce autoimmune response against ß-cells, leading to type 1 diabetes mellitus (T1DM). Recently, several antigen-specific immunotherapies have been developed to treat T1DM. Thus, identification of T1DM associated peptides with antigenic regions or epitopes is important for peptide based-therapeutics (e.g. immunotherapeutic). In this study, for the first time, an attempt has been made to develop a method for predicting, designing, and scanning of T1DM associated peptides with high precision. We analysed 815 T1DM associated peptides and observed that these peptides are not associated with a specific class of HLA alleles. Thus, HLA binder prediction methods are not suitable for predicting T1DM associated peptides. First, we developed a similarity/alignment based method using Basic Local Alignment Search Tool and achieved a high probability of correct hits with poor coverage. Second, we developed an alignment-free method using machine learning techniques and got a maximum AUROC of 0.89 using dipeptide composition. Finally, we developed a hybrid method that combines the strength of both alignment free and alignment-based methods and achieves maximum area under the receiver operating characteristic of 0.95 with Matthew's correlation coefficient of 0.81 on an independent dataset. We developed a web server 'DMPPred' and stand-alone server for predicting, designing and scanning T1DM associated peptides (https://webs.iiitd.edu.in/raghava/dmppred/).


Assuntos
Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/genética , Simulação por Computador , Peptídeos/química , Epitopos/química , Software
10.
Biol Methods Protoc ; 7(1): bpac012, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734767

RESUMO

Identification of somatic mutations with high precision is one of the major challenges in the prediction of high-risk liver cancer patients. In the past, number of mutations calling techniques has been developed that include MuTect2, MuSE, Varscan2, and SomaticSniper. In this study, an attempt has been made to benchmark the potential of these techniques in predicting the prognostic biomarkers for liver cancer. Initially, we extracted somatic mutations in liver cancer patients using Variant Call Format (VCF) and Mutation Annotation Format (MAF) files from the cancer genome atlas. In terms of size, the MAF files are 42 times smaller than VCF files and containing only high-quality somatic mutations. Furthermore, machine learning-based models have been developed for predicting high-risk cancer patients using mutations obtained from different techniques. The performance of different techniques and data files has been compared based on their potential to discriminate high- and low-risk liver cancer patients. Based on correlation analysis, we selected 80 genes having significant negative correlation with the overall survival of liver cancer patients. The univariate survival analysis revealed the prognostic role of highly mutated genes. Single gene-based analysis showed that MuTect2 technique-based MAF file has achieved maximum hazard ratio (HRLAMC3) of 9.25 with P-value of 1.78E-06. Further, we developed various prediction models using risk-associated top-10 genes for each technique. Our results indicate that MuTect2 technique-based VCF files outperform all other methods with maximum Area Under the Receiver-Operating Characteristic curve of 0.765 and HR = 4.50 (P-value = 3.83E-15). Eventually, VCF file generated using MuTect2 technique performs better among other mutation calling techniques for the prediction of high-risk liver cancer patients. We hope that our findings will provide a useful and comprehensive comparison of various mutation-calling techniques for the prognostic analysis of cancer patients. In order to serve the scientific community, we have provided a Python-based pipeline to develop the prediction models using mutation profiles (VCF/MAF) of cancer patients. It is available on GitHub at https://github.com/raghavagps/mutation_bench.

11.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35580839

RESUMO

Human leukocyte antigens (HLA) regulate various innate and adaptive immune responses and play a crucial immunomodulatory role. Recent studies revealed that non-classical HLA-(HLA-E & HLA-G) based immunotherapies have many advantages over traditional HLA-based immunotherapy, particularly against cancer and COVID-19 infection. In the last two decades, several methods have been developed to predict the binders of classical HLA alleles. In contrast, limited attempts have been made to develop methods for predicting non-classical HLA binding peptides, due to the scarcity of sufficient experimental data. Of note, in order to facilitate the scientific community, we have developed an artificial intelligence-based method for predicting binders of class-Ib HLA alleles. All the models were trained and tested on experimentally validated data obtained from the recent release of IEDB. The machine learning models achieved more than 0.98 AUC for HLA-G alleles on validation dataset. Similarly, our models achieved the highest AUC of 0.96 and 0.94 on the validation dataset for HLA-E*01:01 and HLA-E*01:03, respectively. We have summarized the models developed in the past for non-classical HLA and validated the performance with the models developed in this study. Moreover, to facilitate the community, we have utilized our tool for predicting the potential non-classical HLA binding peptides in the spike protein of different variants of virus causing COVID-19, including Omicron (B.1.1.529). One of the major challenges in the field of immunotherapy is to identify the promiscuous binders or antigenic regions that can bind to a large number of HLA alleles. To predict the promiscuous binders for the non-classical HLA alleles, we developed a web server HLAncPred (https://webs.iiitd.edu.in/raghava/hlancpred) and standalone package.


Assuntos
Inteligência Artificial , COVID-19 , Sítios de Ligação , COVID-19/genética , Antígenos HLA-G/metabolismo , Humanos , Peptídeos/química , Ligação Proteica , Glicoproteína da Espícula de Coronavírus/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-35305716

RESUMO

Immunotherapy is a rapidly growing therapy for cancer which have numerous benefits over conventional treatments like surgery, chemotherapy, and radiation. Overall survival of cancer patients has improved significantly due to the use of immunotherapy. It acts as a novel pillar for treating different malignancies from their primary to the metastatic stage. Recent preferments in high-throughput sequencing and computational immunology leads to the development of targeted immunotherapy for precision oncology. In the last few decades, several computational methods and resources have been developed for designing immunotherapy against cancer. In this review, we have summarized cancer-associated genomic, transcriptomic, and mutation profile repositories. We have also enlisted in silico methods for the prediction of vaccine candidates, HLA binders, cytokines inducing peptides, and potential neoepitopes. Of note, we have incorporated the most important bioinformatics pipelines and resources for the designing of cancer immunotherapy. Moreover, to facilitate the scientific community, we have developed a web portal entitled ImmCancer (https://webs.iiitd.edu.in/raghava/immcancer/), comprises cancer immunotherapy tools and repositories.


Assuntos
Neoplasias , Biologia Computacional , Bases de Dados Factuais , Humanos , Imunoterapia/métodos , Medicina de Precisão
13.
Comput Biol Med ; 143: 105297, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35152041

RESUMO

BACKGROUND: Interleukin 13 (IL-13) is an immunoregulatory cytokine, primarily released by activated T-helper 2 cells. IL-13 induces the pathogenesis of many allergic diseases, such as airway hyperresponsiveness, glycoprotein hypersecretion, and goblet cell hyperplasia. In addition, IL-13 inhibits tumor immunosurveillance, leading to carcinogenesis. Since elevated IL-13 serum levels are severe in COVID-19 patients, predicting IL-13 inducing peptides or regions in a protein is vital to designing safe protein therapeutics particularly immunotherapeutic. OBJECTIVE: The present study describes a method to develop, predict, design, and scan IL-13 inducing peptides. METHODS: The dataset experimentally validated 313 IL-13 inducing peptides, and 2908 non-inducing homo-sapiens peptides extracted from the immune epitope database (IEDB). A total of 95 key features using the linear support vector classifier with the L1 penalty (SVC-L1) technique was extracted from the originally generated 9165 features using Pfeature. These key features were ranked based on their prediction ability, and the top 10 features were used to build machine learning prediction models. Various machine learning techniques were deployed to develop models for predicting IL-13 inducing peptides. These models were trained, tested, and evaluated using five-fold cross-validation techniques; the best model was evaluated on an independent dataset. RESULTS: Our best model based on XGBoost achieves a maximum AUC of 0.83 and 0.80 on the training and independent dataset, respectively. Our analysis indicates that certain SARS-COV2 variants are more prone to induce IL-13 in COVID-19 patients. CONCLUSION: The best performing model was incorporated in web-server and standalone package named 'IL-13Pred' for precise prediction of IL-13 inducing peptides. For large dataset analysis standalone package of IL-13Pred is available at (https://webs.iiitd.edu.in/raghava/il13pred/) webserver and over GitHub link: https://github.com/raghavagps/il13pred.

14.
J Comput Biol ; 28(12): 1248-1257, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34898255

RESUMO

Prostate cancer (PCa) is the second lethal malignancy in men worldwide. In the past, numerous research groups investigated the omics profiles of patients and scrutinized biomarkers for the diagnosis and prognosis of PCa. However, information related to the biomarkers is widely scattered across numerous resources in complex textual format, which poses hindrance to understand the tumorigenesis of this malignancy and scrutinization of robust signature. To create a comprehensive resource, we collected all the relevant literature on PCa biomarkers from the PubMed. We scrutinize the extensive information about each biomarker from a total of 412 unique research articles. Each entry of the database incorporates PubMed ID, biomarker name, biomarker type, biomolecule, source, subjects, validation status, and performance measures such as sensitivity, specificity, and hazard ratio (HR). In this study, we present ProCanBio, a manually curated database that maintains detailed data on 2053 entries of potential PCa biomarkers obtained from 412 publications in user-friendly tabular format. Among them are 766 protein-based, 507 RNA-based, 157 genomic mutations, 260 miRNA-based, and 122 metabolites-based biomarkers. To explore the information in the resource, a web-based interactive platform was developed with searching and browsing facilities. To the best of the authors' knowledge, there is no resource that can consolidate the information contained in all the published literature. Besides this, ProCanBio is freely available and is compatible with most web browsers and devices. Eventually, we anticipate this resource will be highly useful for the research community involved in the area of prostate malignancy.


Assuntos
Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Curadoria de Dados/métodos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Bases de Dados Factuais , Redes Reguladoras de Genes , Humanos , Masculino , Metabolômica , MicroRNAs/genética , Mutação , Prognóstico , Mapas de Interação de Proteínas , Interface Usuário-Computador , Navegador
15.
Comput Biol Med ; 136: 104746, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34388468

RESUMO

BACKGROUND: Allergy is the abrupt reaction of the immune system that may occur after the exposure to allergens such as proteins, peptides, or chemicals. In the past, various methods have been generated for predicting allergenicity of proteins and peptides. In contrast, there is no method that can predict allergenic potential of chemicals. In this paper, we described a method ChAlPred developed for predicting chemical allergens as well as for designing chemical analogs with desired allergenicity. METHOD: In this study, we have used 403 allergenic and 1074 non-allergenic chemical compounds obtained from IEDB database. The PaDEL software was used to compute the molecular descriptors of the chemical compounds to develop different prediction models. All the models were trained and tested on the 80% training data and evaluated on the 20% validation data using the 2D, 3D and FP descriptors. RESULTS: In this study, we have developed different prediction models using several machine learning approaches. It was observed that the Random Forest based model developed using hybrid descriptors performed the best, and achieved the maximum accuracy of 83.39% and AUC of 0.93 on validation dataset. The fingerprint analysis of the dataset indicates that certain chemical fingerprints are more abundant in allergens that include PubChemFP129 and GraphFP1014. We have also predicted allergenicity potential of FDA-approved drugs using our best model and identified the drugs causing allergic symptoms (e.g., Cefuroxime, Spironolactone, Tioconazole). Our results agreed with allergenicity of these drugs reported in literature. CONCLUSIONS: To aid the research community, we developed a smart-device compatible web server ChAlPred (https://webs.iiitd.edu.in/raghava/chalpred/) that allows to predict and design the chemicals with allergenic properties.


Assuntos
Alérgenos , Proteínas , Computadores , Peptídeos , Software
16.
Comput Biol Med ; 133: 104391, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33892308

RESUMO

Nanostructures generated by self-assembly of peptides yield nanomaterials that have many therapeutic applications, including drug delivery and biomedical engineering, due to their low cytotoxicity and higher uptake by targeted cells owing to their high affinity and specificity towards cell surface receptors. Despite the promising implications of this rapidly expanding field, there is no dedicated resource to study peptide nanostructures. This study endeavours to create a repository of short peptides, which may prove to be the best models to study ordered nanostructures formed by peptide self-assembly. SAPdb has a repertoire of 1049 entries of experimentally validated nanostructures formed by the self-assembly of small peptides. It consists of 328 tripeptides, 701 dipeptides, and 20 single amino acids with some conjugate partners. Each entry encompasses comprehensive information about the peptide, such as chemical modifications, the type of nanostructure formed, experimental conditions like pH, temperature, solvent required for the self-assembly, etc. Our analysis indicates that peptides containing aromatic amino acids favour the formation of self-assembling nanostructures. Additionally, we observed that these peptides form different nanostructures under different experimental conditions. SAPdb provides this comprehensive information in a hassle-free tabulated manner at a glance. User-friendly browsing, searching, and analysis modules have been integrated for easy data retrieval, data comparison, and examination of properties. We anticipate SAPdb to be a valuable repository for researchers engaged in the burgeoning arena of nanobiotechnology. It is freely available at https://webs.iiitd.edu.in/raghava/sapdb.


Assuntos
Nanoestruturas , Peptídeos , Aminoácidos , Bases de Dados Factuais , Sistemas de Liberação de Medicamentos
17.
Brief Bioinform ; 22(2): 936-945, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33034338

RESUMO

Interleukin 6 (IL-6) is a pro-inflammatory cytokine that stimulates acute phase responses, hematopoiesis and specific immune reactions. Recently, it was found that the IL-6 plays a vital role in the progression of COVID-19, which is responsible for the high mortality rate. In order to facilitate the scientific community to fight against COVID-19, we have developed a method for predicting IL-6 inducing peptides/epitopes. The models were trained and tested on experimentally validated 365 IL-6 inducing and 2991 non-inducing peptides extracted from the immune epitope database. Initially, 9149 features of each peptide were computed using Pfeature, which were reduced to 186 features using the SVC-L1 technique. These features were ranked based on their classification ability, and the top 10 features were used for developing prediction models. A wide range of machine learning techniques has been deployed to develop models. Random Forest-based model achieves a maximum AUROC of 0.84 and 0.83 on training and independent validation dataset, respectively. We have also identified IL-6 inducing peptides in different proteins of SARS-CoV-2, using our best models to design vaccine against COVID-19. A web server named as IL-6Pred and a standalone package has been developed for predicting, designing and screening of IL-6 inducing peptides (https://webs.iiitd.edu.in/raghava/il6pred/).


Assuntos
COVID-19/fisiopatologia , Simulação por Computador , Interleucina-6/biossíntese , Peptídeos/metabolismo , COVID-19/virologia , Bases de Dados de Proteínas , Conjuntos de Dados como Assunto , Humanos , Interleucina-6/fisiologia , Aprendizado de Máquina , SARS-CoV-2/isolamento & purificação
18.
Front Genet ; 11: 221, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32273881

RESUMO

Human leukocyte antigen (HLA) are essential components of the immune system that stimulate immune cells to provide protection and defense against cancer. Thousands of HLA alleles have been reported in the literature, but only a specific set of HLA alleles are present in an individual. The capability of the immune system to recognize cancer-associated mutations depends on the presence of a particular set of alleles, which elicit an immune response to fight against cancer. Therefore, the occurrence of specific HLA alleles affects the survival outcome of cancer patients. In the current study, prediction models were developed, using 401 cutaneous melanoma patients, to predict the overall survival (OS) of patients using their clinical data and HLA alleles. We observed that the presence of certain favorable superalleles like HLA-B∗55 (HR = 0.15, 95% CI 0.034-0.67), HLA-A∗01 (HR = 0.5, 95% CI 0.3-0.8), is responsible for the improved OS. In contrast, the presence of certain unfavorable superalleles such as HLA-B∗50 (HR = 2.76, 95% CI 1.284-5.941), HLA-DRB1∗12 (HR = 3.44, 95% CI 1.64-7.2) is responsible for the poor survival. We developed prediction models using key 14 HLA superalleles, demographic, and clinical characteristics for predicting high-risk cutaneous melanoma patients and achieved HR = 4.52 (95% CI 3.088-6.609, p-value = 8.01E-15). Eventually, we also provide a web-based service to the community for predicting the risk status in cutaneous melanoma patients (https://webs.iiitd.edu.in/raghava/skcmhrp/).

19.
Sci Rep ; 9(1): 15790, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31673075

RESUMO

The metastatic Skin Cutaneous Melanoma (SKCM) has been associated with diminished survival rates and high mortality rates worldwide. Thus, segregating metastatic melanoma from the primary tumors is crucial to employ an optimal therapeutic strategy for the prolonged survival of patients. The SKCM mRNA, miRNA and methylation data of TCGA is comprehensively analysed to recognize key genomic features that can segregate metastatic and primary tumors. Further, machine learning models have been developed using selected features to distinguish the same. The Support Vector Classification with Weight (SVC-W) model developed using the expression of 17 mRNAs achieved Area under the Receiver Operating Characteristic (AUROC) curve of 0.95 and an accuracy of 89.47% on an independent validation dataset. This study reveals the genes C7, MMP3, KRT14, LOC642587, CASP7, S100A7 and miRNAs hsa-mir-205 and hsa-mir-203b as the key genomic features that may substantially contribute to the oncogenesis of melanoma. Our study also proposes genes ESM1, NFATC3, C7orf4, CDK14, ZNF827, and ZSWIM7 as novel putative markers for cutaneous melanoma metastasis. The major prediction models and analysis modules to predict metastatic and primary tumor samples of SKCM are available from a webserver, CancerSPP ( http://webs.iiitd.edu.in/raghava/cancerspp/ ).


Assuntos
Bases de Dados Genéticas , Perfilação da Expressão Gênica , Melanoma , MicroRNAs , Proteínas de Neoplasias , RNA Mensageiro , RNA Neoplásico , Neoplasias Cutâneas , Progressão da Doença , Feminino , Humanos , Internet , Melanoma/genética , Melanoma/metabolismo , MicroRNAs/biossíntese , MicroRNAs/genética , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Melanoma Maligno Cutâneo
20.
Front Genet ; 10: 1306, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998366

RESUMO

The high mortality rate of hepatocellular carcinoma (HCC) is primarily due to its late diagnosis. In the past, numerous attempts have been made to design genetic biomarkers for the identification of HCC; unfortunately, most of the studies are based on small datasets obtained from a specific platform or lack reasonable validation performance on the external datasets. In order to identify a universal expression-based diagnostic biomarker panel for HCC that can be applicable across multiple platforms, we have employed large-scale transcriptomic profiling datasets containing a total of 2,316 HCC and 1,665 non-tumorous tissue samples. These samples were obtained from 30 studies generated by mainly four types of profiling techniques (Affymetrix, Illumina, Agilent, and High-throughput sequencing), which are implemented in a wide range of platforms. Firstly, we scrutinized overlapping 26 genes that are differentially expressed in numerous datasets. Subsequently, we identified a panel of three genes (FCN3, CLEC1B, and PRC1) as HCC biomarker using different feature selection techniques. Three-genes-based HCC biomarker identified HCC samples in training/validation datasets with an accuracy between 93 and 98%, Area Under Receiver Operating Characteristic curve (AUROC) in a range of 0.97 to 1.0. A reasonable performance, i.e., AUROC 0.91-0.96 achieved on validation dataset containing peripheral blood mononuclear cells, concurred their non-invasive utility. Furthermore, the prognostic potential of these genes was evaluated on TCGA-LIHC and GSE14520 cohorts using univariate survival analysis. This analysis revealed that these genes are prognostic indicators for various types of the survivals of HCC patients (e.g., Overall Survival, Progression-Free Survival, Disease-Free Survival). These genes significantly stratified high-risk and low-risk HCC patients (p-value <0.05). In conclusion, we identified a universal platform-independent three-genes-based biomarker that can predict HCC patients with high precision and also possess significant prognostic potential. Eventually, we developed a web server HCCpred based on the above study to facilitate scientific community (http://webs.iiitd.edu.in/raghava/hccpred/).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA