Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 154: 113654, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36067568

RESUMO

The growth of cancerous cells and their responses towards substantial therapeutics are primarily controlled by inflammations (acute and chronic) and inflammation-associated products, which either endorse or repress tumor progression. Additionally, major signaling pathways, including NF-κB, STAT3, inflammation-causing factors (cytokines, TNF-α, chemokines), and growth-regulating factors (VEGF, TGF-ß), are vital regulators responsible for the instigation and resolution of inflammations. Moreover, the conventional chemotherapeutics have exhibited diverse limitations, including poor pharmacokinetics, unfavorable chemical properties, poor targetability to the disease-specific disease leading to toxicity; thus, their applications are restricted in inflammation-mediated cancer therapy. Furthermore, nanotechnology has demonstrated potential benefits over conventional chemotherapeutics, such as it protected the incorporated drug/bioactive moiety from enzymatic degradation within the systemic circulation, improving the physicochemical properties of poorly aqueous soluble chemotherapeutic agents, and enhancing their targetability in specified carcinogenic cells rather than accumulating in the healthy cells, leading reduced cytotoxicity. Among diverse nanomaterials, polyester-based nanoparticulate delivery systems have been extensively used to target various inflammation-mediated cancers. This review summarizes the therapeutic potentials of various polyester nanomaterials (PLGA, PCL, PLA, PHA, and others)-based delivery systems targeting multiple signaling pathways related to inflammation-mediated cancer.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Inflamação/tratamento farmacológico , Nanomedicina , Neoplasias/patologia , Poliésteres , Transdução de Sinais
2.
Semin Cancer Biol ; 86(Pt 2): 1086-1104, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35218902

RESUMO

Recent mounting evidence has revealed extensive genetic heterogeneity within tumors that drive phenotypic variation affecting key cancer pathways, making cancer treatment extremely challenging. Diverse cancer types display resistance to treatment and show patterns of relapse following therapy. Therefore, efforts are required to address tumor heterogeneity by developing a broad-spectrum therapeutic approach that combines targeted therapies. Inflammation has been progressively documented as a vital factor in tumor advancement and has consequences in epigenetic variations that support tumor instigation, encouraging all the tumorigenesis phases. Increased DNA damage, disrupted DNA repair mechanisms, cellular proliferation, apoptosis, angiogenesis, and its incursion are a few pro-cancerous outcomes of chronic inflammation. A clear understanding of the cellular and molecular signaling mechanisms of tumor-endorsing inflammation is necessary for further expansion of anti-cancer therapeutics targeting the crosstalk between tumor development and inflammatory processes. Multiple inflammatory signaling pathways, such as the NF-κB signaling pathway, JAK-STAT signaling pathway, MAPK signaling, PI3K/AKT/mTOR signaling, Wnt signaling cascade, and TGF-ß/Smad signaling, have been found to regulate inflammation, which can be modulated using various factors such as small molecule inhibitors, phytochemicals, recombinant cytokines, and nanoparticles (NPs) in conjugation to phytochemicals to treat cancer. Researchers have identified multiple targets to specifically alter inflammation in cancer therapy to restrict malignant progression and improve the efficacy of cancer therapy. siRNA-and shRNA-loaded NPs have been observed to downregulate STAT3 signaling pathways and have been employed in studies to target tumor malignancies. This review highlights the pathways involved in the interaction between tumor advancement and inflammatory progression, along with the novel approaches of nanotechnology-based drug delivery systems currently used to target inflammatory signaling pathways to combat cancer.


Assuntos
Nanomedicina , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Compreensão , Recidiva Local de Neoplasia , Transdução de Sinais , Inflamação/tratamento farmacológico
3.
Pharmaceuticals (Basel) ; 14(7)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34358102

RESUMO

The presence of small subpopulations of cells within tumor cells are known as cancer stem cells (CSCs). These cells have been the reason for metastasis, resistance with chemotherapy or radiotherapy, and tumor relapse in several types of cancers. CSCs underwent to epithelial-mesenchymal transition (EMT) and resulted in the development of aggressive tumors. CSCs have potential to modulate numerous signaling pathways including Wnt, Hh, and Notch, therefore increasing the stem-like characteristics of cancer cells. The raised expression of drug efflux pump and suppression of apoptosis has shown increased resistance with anti-cancer drugs. Among many agents which were shown to modulate these, the plant-derived bioactive agents appear to modulate these key regulators and were shown to remove CSCs. This review aims to comprehensively scrutinize the preclinical and clinical studies demonstrating the effects of phytocompounds on CSCs isolated from various tumors. Based on the available convincing literature from preclinical studies, with some clinical data, it is apparent that selective targeting of CSCs with plants, plant preparations, and plant-derived bioactive compounds, termed phytochemicals, may be a promising strategy for the treatment of relapsed cancers.

4.
Saudi J Biol Sci ; 27(12): 3581-3592, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33304169

RESUMO

Mitochondria are a major intracellular organelle for drug targeting due to its functional roles in cellular metabolism and cell signaling for proliferation and cell death. Mitochondria-targeted treatment strategy could be promising to improve the therapeutic efficacy of cancer while minimizing the adverse side effects. Over the last decades, several studies have explored and focused on mitochondrial functions, which has led to the emergence of mitochondria-specific therapies. Molecules in the mitochondria are considered to be prime targets, and a wide range of molecular strategies have been designed for targeting mitochondria compared with that of the cytosol. In this review, we focused on the molecular mechanisms of mitochondria-specific ligand targeting and selective drug action strategies for targeting mitochondria, including those premised on mitochondrial targeting of signal peptides (MTS), cell-penetrating peptides (CPPs), and use of lipophilic cations. Furthermore, most research has concentrated on specific conjugation of ligands to therapeutic molecules to enhance their effectiveness. There are several variations for the ideal design and development for mitochondrial-targeted drugs, such as selecting a suitable ligand and linker targets. However, some challenges related to drug solubility and selectivity could be resolved using the nanocarrier system. Nanoparticles yield excellent advantages for targeting and transmitting therapeutic drugs, and they offer elegant platforms for mitochondria-specific drug delivery. We explain many of the advanced and proven strategies for multifunctional mitochondria-specific targets, which should contribute to achieving better anticancer therapies in a promising future.

5.
Saudi J Biol Sci ; 27(5): 1302-1309, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32346339

RESUMO

BACKGROUND AND OBJECTIVES: Cissus quadrangularis Linn, is a rich bioresource for folk and traditional medicines from ancient times till date. The present study aimed to investigate the free radical scavenging and anticancer efficacy in vitro of the ethanolic and methanolic extract from the aerial parts of Cissus quadrangularis (L). MATERIAL AND METHODS: In vitro cell-free antioxidant analyses were performed for the ethanolic extract of Cissus quadrangularis (L). (EECQ) and methanolic extract of Cissus quadrangularis (L). (MECQ) using different free radical scavenging assays includes DPPH, nitric oxide, superoxide, metal chelation, and hydrogen peroxide radical scavenging assays. In vitro leukemic cytotoxic assessment by MTT assay was performed both EECQ and MECQ extract against HL-60 cell lines. RESULTS: Strong antioxidant effects were recorded in EECQ and MECQ in all the cell-free models. The ethanolic extract exhibited a significant dose-dependent free radical activity in comparison with methanolic extracts. The EECQ and MECQ possess pronounced anticancer efficacy against leukemic cells HL-60 with an IC50 value of 36 µg/mL and 40 µg/mL respectively. CONCLUSION: Present data indicates the presence of marked antioxidant and anticancer behaviors in the extracts of aerial portions of Cissus quadrangularis (L). extracts. Thus, Cissus quadrangularis (L). poses as a promising safe chemopreventive plant to combat cancer.

6.
Phytomedicine ; 56: 279-285, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30668349

RESUMO

BACKGROUND: New targeted therapies are intended to minimize the toxic effects and maximize destruction of tumor cells. Folate is a membrane-bound receptor that plays a vital role in the uptake of anti-folate molecules aimed for efficient drug delivery of anti-folate drugs. PURPOSE: The present study is aimed at the modulation of the expression of folate receptor by curcumin that enhances the intake, cytotoxicity and anticancer effects of paclitaxel in HeLa cells. MATERIALS AND METHODS: HeLa cells were pretreated with curcumin and treated with paclitaxel. We measured the cell viability, uptake of radiolabelled folic acid and paclitaxel, Folate receptor -alpha (FR-α) protein expression by immunocytochemistry and western blot and FR-α mRNA expression by qualitative and quantitative analysis. RESULTS: This study shows that curcumin (10 - 50 µM) causes significantly increased cytotoxicity in a dose and time dependent manner. It also enhances the intake of radiolabeled folic acid and paclitaxel 3-4 folds in HeLa cells. The pretreatment of HeLa cells with curcumin shows statistically significant of cell death by paclitaxel. The quantitative RT-PCR demonstrates the expression of FR- α mRNA upon curcumin treatment. Furthermore, immunochemistry and western blotting analysis proved that curcumin enhances expression the FR- α in HeLa cells. CONCLUSION: Our study proved that the molecular mechanism of curcumin enhances the upregulation of FR - α mRNA and protein expression in HeLa cells. Therefore, a combination of curcumin and paclitaxel at less concentration may be a targeting strategy for FR-targeted drug delivery providing a better therapeutic intervention of cancer.


Assuntos
Curcumina/farmacologia , Receptor 1 de Folato/metabolismo , Paclitaxel/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Curcumina/administração & dosagem , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos , Ácido Fólico/metabolismo , Células HeLa , Humanos , Paclitaxel/administração & dosagem
7.
Can J Diabetes ; 42(4): 446-456.e1, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29229313

RESUMO

Adipose tissue is an enormously active endocrine organ, secreting various hormones, such as adiponectin, leptin, resistin and visfatin, together with classical cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). All these adipocytokines play significant roles in the regulation of energy metabolism, glucose and lipid metabolism, reproduction, cardiovascular function and immunity. Adipocytokines are significantly regulated by nutritional status and can directly influence other organ systems, including brain, liver and skeletal muscle. Adiponectin plays a key role as an anti-inflammatory hormone. Upregulated expression of resistin, vaspin, apelin and TNF-α plays a significant role in induction of insulin resistance linked with obesity and type 2 diabetes. Ghrelin, the circulating peptide, has been found to stimulate appetite and regulate energy balance. Thus, it can be considered 1 of the candidate genes for obesity and type 2 diabetes. Omentin is a novel adipokine produced by visceral adipose tissue. Circulating levels of omentin are decreased in insulin-resistant states, for example, in obesity and diabetes. IL-6 plays a vital role in regulating the accumulation of lipids intramyocardially. Based on the biologic relevance of these adipocytokines, they can no longer be considered as energy storage sites alone but must also be considered in metabolic control. Hence, the present review summarizes the regulatory roles of adipocytokines in diabetes linked with obesity.


Assuntos
Adipocinas/fisiologia , Doenças Cardiovasculares/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina/fisiologia , Tecido Adiposo/metabolismo , Tecido Adiposo/fisiologia , Animais , Doenças Cardiovasculares/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/patologia , Metabolismo Energético/fisiologia , Humanos
8.
Biochimie ; 95(8): 1567-73, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23624207

RESUMO

Folate receptors are targets of various strategies aimed at efficient delivery of anti-cancer drugs. Folate receptors also play a role in the uptake of antifolate drugs which are used for therapeutic intervention in leukemia. Therefore, it is important to identify compounds which regulate expression of folate receptors in leukemic cells. The present study examined if curcumin could modulate the uptake and cytotoxicity of the antifolate drug methotrexate, in KG-1 leukemic cells. This is the first report to show that curcumin (10-50 µM) causes a significant, dose-dependent, 2-3 fold increase in uptake of radiolabelled folic acid and methotrexate into KG-1 cells both at 24 h and 48 h of treatment. Interestingly, pre-treatment of KG-1 leukemic cells with curcumin (10 µM and 25 µM) also caused a statistically significant enhancement in the cytotoxicity of methotrexate. We performed Real Time Quantitative RT-PCR to confirm the upregulation of FRß mRNA in curcumin treated cells. Immunocytochemistry and Western blotting showed that curcumin caused increased expression of folate receptor ßin KG-1 cells. Our data show that the mechanism of curcumin action involves up-regulation of folate receptor ß mRNA and protein in KG-1 cells. Therefore, combination of non-toxic concentrations of curcumin and methotrexate, may be a viable strategy for therapeutic intervention for leukemias using a folate receptor-targeted drug delivery system.


Assuntos
Curcumina/farmacologia , Receptor 2 de Folato/metabolismo , Metotrexato/farmacologia , Antineoplásicos/farmacologia , Transporte Biológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptor 2 de Folato/genética , Antagonistas do Ácido Fólico/farmacologia , Expressão Gênica/efeitos dos fármacos , Humanos , Imuno-Histoquímica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA