Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Neuro Oncol ; 26(1): 178-190, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37503880

RESUMO

BACKGROUND: High-grade gliomas (HGG) in young children pose a challenge due to favorable but unpredictable outcomes. While retrospective studies broadened our understanding of tumor biology, prospective data is lacking. METHODS: A cohort of children with histologically diagnosed HGG from the SJYC07 trial was augmented with nonprotocol patients with HGG treated at St. Jude Children's Research Hospital from November 2007 to December 2020. DNA methylome profiling and whole genome, whole exome, and RNA sequencing were performed. These data were integrated with histopathology to yield an integrated diagnosis. Clinical characteristics and preoperative imaging were analyzed. RESULTS: Fifty-six children (0.0-4.4 years) were identified. Integrated analysis split the cohort into four categories: infant-type hemispheric glioma (IHG), HGG, low-grade glioma (LGG), and other-central nervous system (CNS) tumors. IHG was the most prevalent (n = 22), occurred in the youngest patients (median age = 0.4 years), and commonly harbored receptor tyrosine kinase gene fusions (7 ALK, 2 ROS1, 3 NTRK1/2/3, 4 MET). The 5-year event-free (EFS) and overall survival (OS) for IHG was 53.13% (95%CI: 35.52-79.47) and 90.91% (95%CI: 79.66-100.00) vs. 0.0% and 16.67% (95%CI: 2.78-99.74%) for HGG (p = 0.0043, p = 0.00013). EFS and OS were not different between IHG and LGG (p = 0.95, p = 0.43). Imaging review showed IHGs are associated with circumscribed margins (p = 0.0047), hemispheric location (p = 0.0010), and intratumoral hemorrhage (p = 0.0149). CONCLUSIONS: HGG in young children is heterogeneous and best defined by integrating histopathological and molecular features. Patients with IHG have relatively good outcomes, yet they endure significant deficits, making them good candidates for therapy de-escalation and trials of molecular targeted therapy.


Assuntos
Neoplasias Encefálicas , Glioma , Criança , Lactente , Humanos , Pré-Escolar , Estudos Retrospectivos , Estudos Prospectivos , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas , Glioma/tratamento farmacológico , Glioma/genética , Glioma/diagnóstico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética
2.
J Natl Compr Canc Netw ; 21(10): 1097-1105, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37643637

RESUMO

Medulloblastoma in infants and young children is a major challenge to treat because craniospinal irradiation (CSI), a cornerstone of therapy for older children, is disproportionately damaging to very young children. As a result, trials have attempted to delay, omit, and replace this therapy. Although success has been limited, the approach has not been a complete failure. In fact, this approach has cured a significant number of children with medulloblastoma. However, many children have endured intensive regimens of chemotherapy only to experience relapse and undergo salvage treatment with CSI, often at higher doses and with worse morbidity than they would have initially experienced. Recent advancements in molecular diagnostics have proven that response to therapy is biologically driven. Medulloblastoma in infants and young children is divided into 2 molecular groups: Sonic Hedgehog (SHH) and group 3 (G3). Both are chemotherapy-sensitive, but only the SHH medulloblastomas are reliably cured with chemotherapy alone. Moreover, SHH can be molecularly parsed into 2 groups: SHH-1 and SHH-2, with SHH-2 showing higher cure rates with less intensive chemotherapy and SHH-1 requiring more intensive regimens. G3 medulloblastoma, on the other hand, has a near universal relapse rate after chemotherapy-only regimens. This predictability represents a significant breakthrough and affords oncologists the ability to properly risk-stratify therapy in such a way that the most curative and least toxic therapy is selected. This review examines the treatment of medulloblastoma in infants and young children, discusses the molecular advancements, and proposes how to use this information to structure the future management of this disease.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Criança , Lactente , Humanos , Adolescente , Pré-Escolar , Meduloblastoma/diagnóstico , Meduloblastoma/genética , Meduloblastoma/terapia , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/terapia , Proteínas Hedgehog/genética , Proteínas Hedgehog/uso terapêutico , Recidiva Local de Neoplasia , Recidiva
3.
Acta Neuropathol ; 144(4): 733-746, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35982322

RESUMO

Methylation profiling has radically transformed our understanding of tumors previously called central nervous system primitive neuro-ectodermal tumors (CNS-PNET). While this marks a momentous step toward defining key differences, reclassification has thrown treatment into disarray. To shed light on response to therapy and guide clinical decision-making, we report outcomes and molecular features of children with CNS-PNETs from two multi-center risk-adapted studies (SJMB03 for patients ≥ 3 years; SJYC07 for patients < 3 years) complemented by a non-protocol institutional cohort. Seventy patients who had a histological diagnosis of CNS-PNET or CNS embryonal tumor from one of the new categories that has supplanted CNS-PNET were included. This cohort was molecularly characterized by DNA methylation profiling (n = 70), whole-exome sequencing (n = 53), RNA sequencing (n = 20), and germline sequencing (n = 28). Clinical characteristics were detailed, and treatment was divided into craniospinal irradiation (CSI)-containing (SJMB03 and SJMB03-like) and CSI-sparing therapy (SJYC07 and SJYC07-like). When the cohort was analyzed in its entirety, no differences were observed in the 5-year survival rates even when CSI-containing therapy was compared to CSI-sparing therapy. However, when analyzed by DNA methylation molecular grouping, significant survival differences were observed, and treatment particulars provided suggestions of therapeutic response. Patients with CNS neuroblastoma with FOXR2 activation (CNS-NB-FOXR2) had a 5-year event-free survival (EFS)/overall survival (OS) of 66.7% ± 19.2%/83.3% ± 15.2%, and CIC rearranged sarcoma (CNS-SARC-CIC) had a 5-year EFS/OS both of 57.1% ± 18.7% with most receiving regimens that contained radiation (focal or CSI) and multidrug chemotherapy. Patients with high-grade neuroepithelial tumor with BCOR alteration (HGNET-BCOR) had abysmal responses to upfront chemotherapy-only regimens (5-year EFS = 0%), but survival extended with salvage radiation after progression [5-year OS = 53.6% ± 20.1%]. Patients with embryonal tumor with multilayered rosettes (ETMR) or high-grade glioma/glioblastoma multiforme (HGG/GBM) did not respond favorably to any modality (5-year EFS/OS = 10.7 ± 5.8%/17.9 ± 7.2%, and 10% ± 9.0%/10% ± 9.0%, respectively). As an accompaniment, we have assembled this data onto an interactive website to allow users to probe and query the cases. By reporting on a carefully matched clinical and molecular cohort, we provide the needed insight for future clinical management.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Glioblastoma , Neoplasias Embrionárias de Células Germinativas , Tumores Neuroectodérmicos Primitivos , Neoplasias Encefálicas/terapia , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/patologia , Neoplasias do Sistema Nervoso Central/terapia , Criança , Fatores de Transcrição Forkhead , Hospitais , Humanos , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/terapia
4.
Mol Cell ; 82(13): 2472-2489.e8, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35537449

RESUMO

Disruption of antagonism between SWI/SNF chromatin remodelers and polycomb repressor complexes drives the formation of numerous cancer types. Recently, an inhibitor of the polycomb protein EZH2 was approved for the treatment of a sarcoma mutant in the SWI/SNF subunit SMARCB1, but resistance occurs. Here, we performed CRISPR screens in SMARCB1-mutant rhabdoid tumor cells to identify genetic contributors to SWI/SNF-polycomb antagonism and potential resistance mechanisms. We found that loss of the H3K36 methyltransferase NSD1 caused resistance to EZH2 inhibition. We show that NSD1 antagonizes polycomb via cooperation with SWI/SNF and identify co-occurrence of NSD1 inactivation in SWI/SNF-defective cancers, indicating in vivo relevance. We demonstrate that H3K36me2 itself has an essential role in the activation of polycomb target genes as inhibition of the H3K36me2 demethylase KDM2A restores the efficacy of EZH2 inhibition in SWI/SNF-deficient cells lacking NSD1. Together our data expand the mechanistic understanding of SWI/SNF and polycomb interplay and identify NSD1 as the key for coordinating this transcriptional control.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Proteínas F-Box , Histona-Lisina N-Metiltransferase , Histona Desmetilases com o Domínio Jumonji , Proteínas do Grupo Polycomb , Proteína SMARCB1 , Cromatina/genética , Cromatina/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Tumor Rabdoide/genética , Tumor Rabdoide/metabolismo , Tumor Rabdoide/patologia , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética , Células Tumorais Cultivadas/metabolismo
5.
Immunology ; 155(3): 331-345, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30014462

RESUMO

Epitopes identified in large-scale screens of overlapping peptides often share significant levels of sequence identity, complicating the analysis of epitope-related data. Clustering algorithms are often used to facilitate these analyses, but available methods are generally insufficient in their capacity to define biologically meaningful epitope clusters in the context of the immune response. To fulfil this need we developed an algorithm that generates epitope clusters based on representative or consensus sequences. This tool allows the user to cluster peptide sequences on the basis of a specified level of identity by selecting among three different method options. These include the 'clique method', in which all members of the cluster must share the same minimal level of identity with each other, and the 'connected graph method', in which all members of a cluster must share a defined level of identity with at least one other member of the cluster. In cases where it is not possible to define a clear consensus sequence with the connected graph method, a third option provides a novel 'cluster-breaking algorithm' for consensus sequence driven sub-clustering. Herein we demonstrate the tool's clustering performance and applicability using (i) a selection of dengue virus epitopes for the 'clique method', (ii) sets of allergen-derived peptides from related species for the 'connected graph method' and (iii) large data sets of eluted ligand, major histocompatibility complex binding and T-cell recognition data captured within the Immune Epitope Database (IEDB) with the newly developed 'cluster-breaking algorithm'. This novel clustering tool is accessible at http://tools.iedb.org/cluster2/.


Assuntos
Algoritmos , Bases de Dados de Proteínas , Epitopos , Peptídeos , Análise de Sequência de Proteína/métodos , Animais , Epitopos/química , Epitopos/genética , Camundongos , Peptídeos/química , Peptídeos/genética , Ratos
6.
PLoS One ; 13(5): e0196551, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29734356

RESUMO

The microbiome influences adaptive immunity and molecular mimicry influences T cell reactivity. Here, we evaluated whether the sequence similarity of various antigens to the microbiota dampens or increases immunogenicity of T cell epitopes. Sets of epitopes and control sequences derived from 38 antigenic categories (infectious pathogens, allergens, autoantigens) were retrieved from the Immune Epitope Database (IEDB). Their similarity to microbiome sequences was calculated using the BLOSUM62 matrix. We found that sequence similarity was associated with either dampened (tolerogenic; e.g. most allergens) or increased (inflammatory; e.g. Dengue and West Nile viruses) likelihood of a peptide being immunogenic as a function of epitope source category. Ten-fold cross-validation and validation using sets of manually curated epitopes and non-epitopes derived from allergens were used to confirm these initial observations. Furthermore, the genus from which the microbiome homologous sequences were derived influenced whether a tolerogenic versus inflammatory modulatory effect was observed, with Fusobacterium most associated with inflammatory influences and Bacteroides most associated with tolerogenic influences. We validated these effects using PBMCs stimulated with various sets of microbiome peptides. "Tolerogenic" microbiome peptides elicited IL-10 production, "inflammatory" peptides elicited mixed IL-10/IFNγ production, while microbiome epitopes homologous to self were completely unreactive for both cytokines. We also tested the sequence similarity of cockroach epitopes to specific microbiome sequences derived from households of cockroach allergic individuals and non-allergic controls. Microbiomes from cockroach allergic households were less likely to contain sequences homologous to previously defined cockroach allergens. These results are compatible with the hypothesis that microbiome sequences may contribute to the tolerization of T cells for allergen epitopes, and lack of these sequences might conversely be associated with increased likelihood of T cell reactivity against the cockroach epitopes. Taken together this study suggests that microbiome sequence similarity influences immune reactivity to homologous epitopes encoded by pathogens, allergens and auto-antigens.


Assuntos
Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Microbiota/imunologia , Imunidade Adaptativa/imunologia , Adulto , Alérgenos/imunologia , Sequência de Aminoácidos , Reações Cruzadas/imunologia , Bases de Dados de Proteínas , Epitopos/imunologia , Feminino , Humanos , Masculino , Peptídeos/química , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA