Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
2.
Curr Top Med Chem ; 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37496252

RESUMO

BACKGROUND: DNA methyltransferases (DNMTs) have been reported to be potential drug targets in various cancers. The major hurdle in inhibiting DNMTs is the lack of knowledge about different DNMTs and their role in the hypermethylation of gene promoters in cancer cells. Lack of information on specificity, stability, and higher toxicity of previously reported DNMT inhibitors is the major reason for inadequate epigenetic cancer therapy. DNMT1 and DNMT3A are the two DNMTs that are majorly overexpressed in cancers. OBJECTIVE: In this study, we have presented computational and experimental analyses of the potential of some natural compounds, withaferin A (Wi-A), withanone (Wi-N), and caffeic acid phenethyl ester (CAPE), as DNMT inhibitors, in comparison to sinefungin (SFG), a known dual inhibitor of DNMT1 and DNMT3A. METHODS: We used classical simulation methods, such as molecular docking and molecular dynamics simulations, to investigate the binding potential and properties of the test compounds with DNMT1 and DNMT3A. Cell culture-based assays were used to investigate the inactivation of DNMTs and the resulting hypomethylation of the p16INK4A promoter, a key tumour suppressor that is inactivated by hypermethylation in cancer cells, resulting in upregulation of its expression. RESULTS: Among the three test compounds (Wi-A, Wi-N, and CAPE), Wi-A showed the highest binding affinity to both DNMT1 and DNMT3A; CAPE showed the highest affinity to DNMT3A, and Wi-N showed a moderate affinity interaction with both. The binding energies of Wi-A and CAPE were further compared with SFG. Expression analysis of DNMTs showed no difference between control and treated cells. Cell viability and p16INK4A expression analysis showed a dose-dependent decrease in viability, an increase in p16INK4A, and a stronger effect of Wi-A compared to Wi-N and CAPE. CONCLUSION: The study demonstrated the differential binding ability of Wi-A, Wi-N, and CAPE to DNMT1 and DNMT3A, which was associated with their inactivation, leading to hypomethylation and desilencing of the p16INK4A tumour suppressor in cancer cells. The test compounds, particularly Wi-A, have the potential for cancer therapy.

3.
Genes Dis ; 10(4): 1367-1401, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37397557

RESUMO

Cancer is an abnormal state of cells where they undergo uncontrolled proliferation and produce aggressive malignancies that causes millions of deaths every year. With the new understanding of the molecular mechanism(s) of disease progression, our knowledge about the disease is snowballing, leading to the evolution of many new therapeutic regimes and their successive trials. In the past few decades, various combinations of therapies have been proposed and are presently employed in the treatment of diverse cancers. Targeted drug therapy, immunotherapy, and personalized medicines are now largely being employed, which were not common a few years back. The field of cancer discoveries and therapeutics are evolving fast as cancer type-specific biomarkers are progressively being identified and several types of cancers are nowadays undergoing systematic therapies, extending patients' disease-free survival thereafter. Although growing evidence shows that a systematic and targeted approach could be the future of cancer medicine, chemotherapy remains a largely opted therapeutic option despite its known side effects on the patient's physical and psychological health. Chemotherapeutic agents/pharmaceuticals served a great purpose over the past few decades and have remained the frontline choice for advanced-stage malignancies where surgery and/or radiation therapy cannot be prescribed due to specific reasons. The present report succinctly reviews the existing and contemporary advancements in chemotherapy and assesses the status of the enrolled drugs/pharmaceuticals; it also comprehensively discusses the emerging role of specific/targeted therapeutic strategies that are presently being employed to achieve better clinical success/survival rate in cancer patients.

4.
Front Cell Dev Biol ; 10: 918970, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172283

RESUMO

Mortalin, a heat shock family protein enriched in cancer cells, is known to inactivate tumor suppressor protein p53. Abrogation of mortalin-p53 interaction and reactivation of p53 has been shown to trigger growth arrest/apoptosis in cancer cells and hence, suggested to be useful in cancer therapy. In this premise, we earlier screened a chemical library to identify potential disruptors of mortalin-p53 interaction, and reported two novel synthetic small molecules (5-[1-(4-methoxyphenyl) (1,2,3,4-tetraazol-5-yl)]-4-phenylpyrimidine-2-ylamine) and (4-[(1E)-2-(2-phenylindol-3-yl)-1-azavinyl]-1,2,4-triazole) called Mortaparib and MortaparibPlus, respectively. These compounds were shown to possess anticancer activity that was mediated through targeting mortalin and PARP1 proteins, essential for cancer cell survival and proliferation. Here, we report characterization of the third compound, {4-[(4-amino-5-thiophen-2-yl-1,2,4-triazol-3-yl)sulfanylmethyl]-N-(4-methoxyphenyl)-1,3-thiazol-2-amine}, isolated in the same screening. Extensive computational and molecular analyses suggested that the new compound has the capability to interact with mortalin, p53, and PARP1. We provide evidence that this new compound, although required in high concentration as compared to the earlier two compounds (Mortaparib and MortaparibPlus) and hence called MortaparibMild, also downregulates mortalin and PARP1 expression and functions in multiple ways impeding cancer cell proliferation and migration characteristics. MortaparibMild is a novel candidate anticancer compound that warrants further experimental and clinical attention.

5.
Curr Protein Pept Sci ; 23(3): 158-165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35331108

RESUMO

Cancer is fundamentally a disease of perturbed genes. Although many mutations can be marked in the genome of cancer or a transformed cell, the initiation and progression are driven by only a few mutational events, viz., driver mutations that progressively govern and execute the functional impacts. The driver mutations are thus believed to dictate and dysregulate the subsequent cellular proliferative function/decisions, thereby producing a cancerous state. Therefore, identifying the driver events from the genomic alterations in a patient's cancer cell gained enormous attention recently for designing better targeting therapies and paving the way for precision cancer medicine. With rolling advancements in high-throughput omic technologies, analysis of genetic variations and gene expression profiles for cancer patients has become a routine clinical practice. However, it is anticipated that protein structural alterations resulting from such driver mutations can provide more direct and clinically relevant evidence of disease states than genetic signatures alone. This review comprehensively discusses various aspects and approaches that have been developed for the prediction of cancer drivers using genetic signatures and protein structures and their potential application in developing precision cancer therapies.


Assuntos
Neoplasias , Medicina de Precisão , Genômica/métodos , Humanos , Mutação , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisão/métodos , Proteínas/genética
6.
Cancers (Basel) ; 14(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35159054

RESUMO

Withaferin A (Wi-A) and Caffeic Acid Phenethyl Ester (CAPE) are the bioactive ingredients of Ashwagandha (Withania somnifera) and propolis, respectively. Both of these natural compounds have been shown to possess anticancer activity. In the present study, we recruited a low dose of each of these compounds and developed a combination that exhibited remarkably potent anti-migratory and anti-angiogenic activities. Extensive molecular analyses including a cDNA array and expression analyses of the specific gene targets demonstrated that such activities are mediated through their effect on cell adhesion/tight junction proteins (Claudins, E-cadherin), inhibition of canonical Wnt/ß-catenin signaling pathways and the consequent downregulation of EMT-signaling proteins (Vimentin, MMPs, VEGF and VEGFR) that play a critical role in cancer metastasis. The data supported that this novel combination of Wi-A and CAPE (Wi-ACAPE, containing 0.5 µM of Wi-A and 10 µM of CAPE) may be recruited for the treatment of metastatic and aggressive cancers and, hence, warrant further evaluation by recruiting a variety of experimental and clinical metastatic models.

8.
J Biomol Struct Dyn ; 40(1): 1-13, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32469279

RESUMO

Coronavirus disease 2019 (COVID-19) initiated in December 2019 in Wuhan, China and became pandemic causing high fatality and disrupted normal life calling world almost to a halt. Causative agent is a novel coronavirus called Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2/2019-nCoV). While new line of drug/vaccine development has been initiated world-wide, in the current scenario of high infected numbers, severity of the disease and high morbidity, repurposing of the existing drugs is heavily explored. Here, we used a homology-based structural model of transmembrane protease serine 2 (TMPRSS2), a cell surface receptor, required for entry of virus to the target host cell. Using the strengths of molecular docking and molecular dynamics simulations, we examined the binding potential of Withaferin-A (Wi-A), Withanone (Wi-N) and caffeic acid phenethyl ester to TPMRSS2 in comparison to its known inhibitor, Camostat mesylate. We found that both Wi-A and Wi-N could bind and stably interact at the catalytic site of TMPRSS2. Wi-N showed stronger interactions with TMPRSS2 catalytic residues than Wi-A and was also able to induce changes in its allosteric site. Furthermore, we investigated the effect of Wi-N on TMPRSS2 expression in MCF7 cells and found remarkable downregulation of TMPRSS2 mRNA in treated cells predicting dual action of Wi-N to block SARS-CoV-2 entry into the host cells. Since the natural compounds are easily available/affordable, they may even offer a timely therapeutic/preventive value for the management of SARS-CoV-2 pandemic. We also report that Wi-A/Wi-N content varies in different parts of Ashwagandha and warrants careful attention for their use.Communicated by Ramaswamy H. Sarma.


Assuntos
SARS-CoV-2 , Inibidores de Serina Proteinase/farmacologia , Internalização do Vírus/efeitos dos fármacos , Vitanolídeos/farmacologia , Sítios de Ligação , COVID-19 , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Serina , Serina Endopeptidases/genética , Desenvolvimento de Vacinas
9.
J Biomol Struct Dyn ; 40(17): 7885-7898, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-33797339

RESUMO

SARS-CoV-2 outbreak in China in December 2019 and its spread as worldwide pandemic has been a major global health crisis. Extremely high infection and mortality rate has severely affected all sectors of life and derailed the global economy. While drug and vaccine development have been prioritized and have made significant progression, use of phytochemicals and herbal constituents is deemed as a low-cost, safer and readily available alternative. We investigated therapeutic efficacy of eight withanolides (derived from Ashwagandha) against the angiotensin-converting enzyme 2 (ACE2) proteins, a target cell surface receptor for SARS-CoV-2 and report results on the (i) computational analyses including binding affinity and stable interactions with ACE2, occupancy of ACE2 residues in making polar and nonpolar interactions with different withanolides/ligands and (2) in vitro mRNA and protein analyses using human cancer (A549, MCF7 and HSC3) cells. We found that among all withanolides, Withaferin-A, Withanone, Withanoside-IV and Withanoside-V significantly inhibited the ACE2 expression. Analysis of withanolides-rich aqueous extracts derived from Ashwagandha leaves and stem showed a higher ACE2 inhibitory potency of stem-derived extracts. Taken together, we demonstrated the inhibitory potency of Ashwagandha withanolides and its aqueous extracts against ACE2.Communicated by Ramaswamy H. Sarma.


Assuntos
Tratamento Farmacológico da COVID-19 , Withania , Vitanolídeos , Enzima de Conversão de Angiotensina 2 , Humanos , Ligantes , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/metabolismo , SARS-CoV-2 , Withania/química , Withania/metabolismo , Vitanolídeos/química , Vitanolídeos/metabolismo , Vitanolídeos/farmacologia
10.
Biosci Rep ; 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34605873

RESUMO

COVID-19 pandemic caused by SARS-CoV-2 virus has become a global health emergency. Although new vaccines have been generated and being implicated, discovery and application of novel preventive and control measures are warranted. We aimed to identify compound/s that may possess the potential to either block the entry of virus to host cells or attenuate its replication upon infection. Using host cell surface receptor expression (Angiotensin-converting enzyme 2 (ACE2) and Transmembrane protease serine 2 (TMPRSS2) analysis as an assay, we earlier screened several synthetic and natural compounds and identified candidates that showed ability to downregulate their expression. Here, we report experimental and computational analyses of two small molecules, Mortaparib and MortaparibPlus that were initially identified as dual novel inhibitors of mortalin and PARP-1, for their activity against SARS-CoV-2. In silico analyses showed that MortaparibPlus, but not Mortaparib, stably binds into the catalytic pocket of TMPRSS2. In vitro analysis of control and treated cells revealed that MortaparibPlus caused downregulation of ACE2 and TMPRSS2; Mortaparib did not show any effect. Furthermore, computational analysis on SARS-CoV-2 main protease (Mpro) that also predicted the inhibitory activity of MortaparibPlus.  However, cell based anti-virus drug screening assay showed 30~60% viral inhibition in cells treated with non-toxic doses of either MortaparibPlus or Mortaparib. The data suggests that these two closely related compounds possess multimodal anti-COVID 19 activities. Whereas MortaparibPlus works through direct interactions/effects on the host cell surface receptors (ACE2 and TMPRSS2) and the virus protein (Mpro), Mortaparib involves independent mechanisms, elucidation of which warrants further studies.

11.
Biosci Rep ; 41(10)2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34647577

RESUMO

Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has become a global health emergency. Although new vaccines have been generated and being implicated, discovery and application of novel preventive and control measures are warranted. We aimed to identify compounds that may possess the potential to either block the entry of virus to host cells or attenuate its replication upon infection. Using host cell surface receptor expression (angiotensin-converting enzyme 2 (ACE2) and Transmembrane protease serine 2 (TMPRSS2)) analysis as an assay, we earlier screened several synthetic and natural compounds and identified candidates that showed ability to down-regulate their expression. Here, we report experimental and computational analyses of two small molecules, Mortaparib and MortaparibPlus that were initially identified as dual novel inhibitors of mortalin and PARP-1, for their activity against SARS-CoV-2. In silico analyses showed that MortaparibPlus, but not Mortaparib, stably binds into the catalytic pocket of TMPRSS2. In vitro analysis of control and treated cells revealed that MortaparibPlus caused down-regulation of ACE2 and TMPRSS2; Mortaparib did not show any effect. Furthermore, computational analysis on SARS-CoV-2 main protease (Mpro) that also predicted the inhibitory activity of MortaparibPlus. However, cell-based antiviral drug screening assay showed 30-60% viral inhibition in cells treated with non-toxic doses of either MortaparibPlus or Mortaparib. The data suggest that these two closely related compounds possess multimodal anti-COVID-19 activities. Whereas MortaparibPlus works through direct interactions/effects on the host cell surface receptors (ACE2 and TMPRSS2) and the virus protein (Mpro), Mortaparib involves independent mechanisms, elucidation of which warrants further studies.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Biologia Computacional/métodos , Enzima de Conversão de Angiotensina 2/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/imunologia , COVID-19/imunologia , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Humanos , Proteínas Mitocondriais/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , SARS-CoV-2/imunologia , Serina Endopeptidases/imunologia , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus/efeitos dos fármacos
12.
Cancers (Basel) ; 13(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207240

RESUMO

We previously performed a drug screening to identify a potential inhibitor of mortalin-p53 interaction. In four rounds of screenings based on the shift in mortalin immunostaining pattern from perinuclear to pan-cytoplasmic and nuclear enrichment of p53, we had identified MortaparibPlus (4-[(1E)-2-(2-phenylindol-3-yl)-1-azavinyl]-1,2,4-triazole) as a novel synthetic small molecule. In order to validate its activity and mechanism of action, we recruited Luminal-A breast cancer cells, MCF-7 (p53wild type) and T47D (p53L194F) and performed extensive biochemical and immunocytochemical analyses. Molecular analyses revealed that MortaparibPlus is capable of abrogating mortalin-p53 interaction in both MCF-7 and T47D cells. Intriguingly, upregulation of transcriptional activation function of p53 (as marked by upregulation of the p53 effector gene-p21WAF1-responsible for cell cycle arrest and apoptosis) was recorded only in MortaparibPlus-treated MCF-7 cells. On the other hand, MortaparibPlus-treated T47D cells exhibited hyperactivation of PARP1 (accumulation of PAR polymer and decrease in ATP levels) as a possible non-p53 tumor suppression program. However, these cells did not show full signs of either apoptosis or PAR-Thanatos. Molecular analyses attributed such a response to the inability of MortaparibPlus to disrupt the AIF-mortalin complexes; hence, AIF did not translocate to the nucleus to induce chromatinolysis and DNA degradation. These data suggested that the cancer cells possessing enriched levels of such complexes may not respond to MortaparibPlus. Taken together, we report the multimodal anticancer potential of MortaparibPlus that warrants further attention in laboratory and clinical studies.

13.
Int J Biol Macromol ; 184: 297-312, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34118289

RESUMO

COVID-19 caused by SARS-CoV-2 corona virus has become a global pandemic. In the absence of drugs and vaccine, and premises of time, efforts and cost required for their development, natural resources such as herbs are anticipated to provide some help and may also offer a promising resource for drug development. Here, we have investigated the therapeutic prospective of Ashwagandha for the COVID-19 pandemic. Nine withanolides were tested in silico for their potential to target and inhibit (i) cell surface receptor protein (TMPRSS2) that is required for entry of virus to host cells and (ii) viral protein (the main protease Mpro) that is essential for virus replication. We report that the withanolides possess capacity to inhibit the activity of TMPRSS2 and Mpro. Furthermore, withanolide-treated cells showed downregulation of TMPRSS2 expression and inhibition of SARS-CoV-2 replication in vitro, suggesting that Ashwagandha may provide a useful resource for COVID-19 treatment.


Assuntos
Antivirais/farmacologia , Extratos Vegetais/química , SARS-CoV-2/fisiologia , Serina Endopeptidases/metabolismo , Proteínas da Matriz Viral/metabolismo , Vitanolídeos/farmacologia , Células A549 , Antivirais/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Simulação por Computador , Regulação para Baixo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , SARS-CoV-2/efeitos dos fármacos , Serina Endopeptidases/química , Proteínas da Matriz Viral/química , Internalização do Vírus/efeitos dos fármacos , Vitanolídeos/química
14.
Cancers (Basel) ; 13(4)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671256

RESUMO

p53 has an essential role in suppressing the carcinogenesis process by inducing cell cycle arrest/apoptosis/senescence. Mortalin/GRP75 is a member of the Hsp70 protein family that binds to p53 causing its sequestration in the cell cytoplasm. Hence, p53 cannot translocate to the nucleus to execute its canonical tumour suppression function as a transcription factor. Abrogation of mortalin-p53 interaction and subsequent reactivation of p53's tumour suppression function has been anticipated as a possible approach in developing a novel cancer therapeutic drug candidate. A chemical library was screened in a high-content screening system to identify potential mortalin-p53 interaction disruptors. By four rounds of visual assays for mortalin and p53, we identified a novel synthetic small-molecule triazole derivative (4-[(1E)-2-(2-phenylindol-3-yl)-1-azavinyl]-1,2,4-triazole, henceforth named MortaparibPlus). Its activities were validated using multiple bioinformatics and experimental approaches in colorectal cancer cells possessing either wild-type (HCT116) or mutant (DLD-1) p53. Bioinformatics and computational analyses predicted the ability of MortaparibPlus to competitively prevent the interaction of mortalin with p53 as it interacted with the p53 binding site of mortalin. Immunoprecipitation analyses demonstrated the abrogation of mortalin-p53 complex formation in MortaparibPlus-treated cells that showed growth arrest and apoptosis mediated by activation of p21WAF1, or BAX and PUMA signalling, respectively. Furthermore, we demonstrate that MortaparibPlus-induced cytotoxicity to cancer cells is mediated by multiple mechanisms that included the inhibition of PARP1, up-regulation of p73, and also the down-regulation of mortalin and CARF proteins that play critical roles in carcinogenesis. MortaparibPlus is a novel multimodal candidate anticancer drug that warrants further experimental and clinical attention.

15.
Discov Oncol ; 12(1): 64, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35201513

RESUMO

Mutations in the tumor suppressor protein p53 is a prevalent feature in majority of cancers resulting in inactivation of its activities related to control of cell cycle progression and proliferation. p53Y220C is one of the common hotspot mutations that causes decrease in its thermodynamic stability. Some small molecules have been shown to bind to the mutated site and restore its wild type thermodynamics and tumor suppressor function. In this study, we have explored the potential of caffeic acid phenethyl ester (CAPE-a bioactive compound from propolis) to interact with p53Y220C and restore its wild type p53 (p53wt) transcription activation and tumor suppressor activities. We recruited computational methods, viz. molecular docking, molecular dynamics simulations and free energy calculations to study the interaction of CAPE at the mutation crevice and found that it has potential to restore p53wt function of the p53Y220C mutant similar to a previously described restoration molecule PK7242. We provide cell-based experimental evidence to these predictions and suggest CAPE as a potential natural drug for treatment of p53Y220C mutant harboring cancers.

16.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751717

RESUMO

The anti-metastatic and anti-angiogenic activities of triethylene glycol derivatives have been reported. In this study, we investigated their molecular mechanism(s) using bioinformatics and experimental tools. By molecular dynamics analysis, we found that (i) triethylene glycol dimethacrylate (TD-10) and tetraethylene glycol dimethacrylate (TD-11) can act as inhibitors of the catalytic domain of matrix metalloproteinases (MMP-2, MMP-7 and MMP-9) by binding to the S1' pocket of MMP-2 and MMP-9 and the catalytic Zn ion binding site of MMP-7, and that (ii) TD-11 can cause local disruption of the secondary structure of vascular endothelial growth factor A (VEGFA) dimer and exhibit stable interaction at the binding interface of VEGFA receptor R1 complex. Cell-culture-based in vitro experiments showed anti-metastatic phenotypes as seen in migration and invasion assays in cancer cells by both TD-10 and TD-11. Underlying biochemical evidence revealed downregulation of VEGF and MMPs at the protein level; MMP-9 was also downregulated at the transcriptional level. By molecular analyses, we demonstrate that TD-10 and TD-11 target stress chaperone mortalin at the transcription and translational level, yielding decreased expression of vimentin, fibronectin and hnRNP-K, and increase in extracellular matrix (ECM) proteins (collagen IV and E-cadherin) endorsing reversal of epithelial-mesenchymal transition (EMT) signaling.


Assuntos
Biologia Computacional , Metástase Neoplásica/tratamento farmacológico , Neoplasias/tratamento farmacológico , Polietilenoglicóis/química , Caderinas/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Metástase Neoplásica/patologia , Neoplasias/patologia , Polietilenoglicóis/uso terapêutico , Transdução de Sinais/genética
17.
Cancers (Basel) ; 12(5)2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32380701

RESUMO

We have earlier reported anticancer activity in Withaferin A (Wi-A), a withanolide derived from Ashwagandha (Withania somnifera) and caffeic acid phenethyl ester (CAPE), an active compound from New Zealand honeybee propolis. Whereas Wi-A was cytotoxic to both cancer and normal cells, CAPE has been shown to cause selective death of cancer cells. In the present study, we investigated the efficacy of Wi-A, CAPE, and their combination to ovarian and cervical cancer cells. Both Wi-A and CAPE were seen to activate tumor suppressor protein p53 by downregulation of mortalin and abrogation of its interactions with p53. Downregulation of mortalin translated to compromised mitochondria integrity and function that affected poly ADP-ribose polymerase1 (PARP1); a key regulator of DNA repair and protein-target for Olaparib, drugs clinically used for treatment of breast, ovarian and cervical cancers)-mediated DNA repair yielding growth arrest or apoptosis. Furthermore, we also compared the docking capability of Wi-A and CAPE to PARP1 and found that both of these could bind to the catalytic domain of PARP1, similar to Olaparib. We provide experimental evidences that (i) Wi-A and CAPE cause inactivation of PARP1-mediated DNA repair leading to accumulation of DNA damage and activation of apoptosis signaling by multiple ways, and (ii) a combination of Wi-A and CAPE offers selective toxicity and better potency to cancer cells.

18.
J Exp Clin Cancer Res ; 38(1): 499, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31856867

RESUMO

BACKGROUND: Mortalin is enriched in a large variety of cancers and has been shown to contribute to proliferation and migration of cancer cells in multiple ways. It has been shown to bind to p53 protein in cell cytoplasm and nucleus causing inactivation of its tumor suppressor activity in cancer cells. Several other activities of mortalin including mitochondrial biogenesis, ATP production, chaperoning, anti-apoptosis contribute to pro-proliferative and migration characteristics of cancer cells. Mortalin-compromised cancer cells have been shown to undergo apoptosis in in vitro and in vivo implying that it could be a potential target for cancer therapy. METHODS: We implemented a screening of a chemical library for compounds with potential to abrogate cancer cell specific mortalin-p53 interactions, and identified a new compound (named it as Mortaparib) that caused nuclear enrichment of p53 and shift in mortalin from perinuclear (typical of cancer cells) to pancytoplasmic (typical of normal cells). Biochemical and molecular assays were used to demonstrate the effect of Mortaparib on mortalin, p53 and PARP1 activities. RESULTS: Molecular homology search revealed that Mortaparib is a novel compound that showed strong cytotoxicity to ovarian, cervical and breast cancer cells. Bioinformatics analysis revealed that although Mortaparib could interact with mortalin, its binding with p53 interaction site was not stable. Instead, it caused transcriptional repression of mortalin leading to activation of p53 and growth arrest/apoptosis of cancer cells. By extensive computational and experimental analyses, we demonstrate that Mortaparib is a dual inhibitor of mortalin and PARP1. It targets mortalin, PARP1 and mortalin-PARP1 interactions leading to inactivation of PARP1 that triggers growth arrest/apoptosis signaling. Consistent with the role of mortalin and PARP1 in cancer cell migration, metastasis and angiogenesis, Mortaparib-treated cells showed inhibition of these phenotypes. In vivo tumor suppression assays showed that Mortaparib is a potent tumor suppressor small molecule and awaits clinical trials. CONCLUSION: These findings report (i) the discovery of Mortaparib as a first dual inhibitor of mortalin and PARP1 (both frequently enriched in cancers), (ii) its molecular mechanism of action, and (iii) in vitro and in vivo tumor suppressor activity that emphasize its potential as an anticancer drug.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Dano ao DNA , Feminino , Proteínas de Choque Térmico HSP70/química , Humanos , Camundongos , Neoplasias Ovarianas/metabolismo , Poli(ADP-Ribose) Polimerase-1/química , Inibidores de Poli(ADP-Ribose) Polimerases/química , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/agonistas , Proteína Supressora de Tumor p53/química , Neoplasias do Colo do Útero/metabolismo
19.
Mar Drugs ; 17(6)2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31195739

RESUMO

Fucoxanthin is commonly found in marine organisms; however, to date, it has been one of the scarcely explored natural compounds. We investigated its activities in human cancer cell culture-based viability, migration, and molecular assays, and found that it possesses strong anticancer and anti-metastatic activities that work irrespective of the p53 status of cancer cells. In our experiments, fucoxanthin caused the transcriptional suppression of mortalin. Cell phenotype-driven molecular analyses on control and treated cells demonstrated that fucoxanthin caused a decrease in hallmark proteins associated with cell proliferation, survival, and the metastatic spread of cancer cells at doses that were relatively safe to the normal cells. The data suggested that the cancer therapy regimen may benefit from the recruitment of fucoxanthin; hence, it warrants further attention for basic mechanistic studies as well as drug development.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Xantofilas/farmacologia , Antineoplásicos/farmacologia , Organismos Aquáticos/química , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos
20.
J Exp Clin Cancer Res ; 38(1): 103, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808373

RESUMO

BACKGROUND: Tumor suppressor p53 protein is frequently mutated in a large majority of cancers. These mutations induce local or global changes in protein structure thereby affecting its binding to DNA. The structural differences between the wild type and mutant p53 thus provide an opportunity to selectively target mutated p53 harboring cancer cells. Restoration of wild type p53 activity in mutants using small molecules that can revert the structural changes have been considered for cancer therapeutics. METHODS: We used bioinformatics and molecular docking tools to investigate the structural changes between the wild type and mutant p53 proteins (p53V143A, p53R249S, p53R273H and p53Y220C) and explored the therapeutic potential of Withaferin A and Withanone for restoration of wild type p53 function in cancer cells. Cancer cells harboring the specific mutant p53 proteins were used for molecular assays to determine the mutant or wild type p53 functions. RESULTS: We found that p53V143A mutation does not show any significant structural changes and was also refractory to the binding of withanolides. p53R249S mutation critically disturbed the H-bond network and destabilized the DNA binding site. However, withanolides did not show any selective binding to either this mutant or other similar variants. p53Y220C mutation created a cavity near the site of mutation with local loss of hydrophobicity and water network, leading to functionally inactive conformation. Mutated structure could accommodate withanolides suggesting their conformational selectivity to target p53Y220C mutant. Using human cell lines containing specific p53 mutant proteins, we demonstrated that Withaferin A, Withanone and the extract rich in these withanolides caused restoration of wild type p53 function in mutant p53Y220C cells. This was associated with induction of p21WAF-1-mediated growth arrest/apoptosis. CONCLUSION: The study suggested that withanolides may serve as highly potent anticancer compounds for treatment of cancers harboring a p53Y220C mutation.


Assuntos
Antineoplásicos/farmacologia , Extratos Vegetais/farmacologia , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Biologia Computacional , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Proteína Supressora de Tumor p53/efeitos dos fármacos , Vitanolídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA