Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 219: 184-194, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636716

RESUMO

Hematopoietic stem cells (HSCs) replenish blood cells under steady state and on demand, that exhibit therapeutic potential for Bone marrow failures and leukemia. Redox signaling plays key role in immune cells and hematopoiesis. However, the role of reactive nitrogen species in hematopoiesis remains unclear and requires further investigation. We investigated the significance of inducible nitric oxide synthase/nitric oxide (iNOS/NO) signaling in hematopoietic stem and progenitor cells (HSPCs) and hematopoiesis under steady-state and stress conditions. HSCs contain low levels of NO and iNOS under normal conditions, but these increase upon bone marrow stress. iNOS-deficient mice showed subtle changes in peripheral blood cells but significant alterations in HSPCs, including increased HSCs and multipotent progenitors. Surprisingly, iNOS-deficient mice displayed heightened susceptibility and delayed recovery of blood progeny following 5-Fluorouracil (5-FU) induced hematopoietic stress. Loss of quiescence and increased mitochondrial stress, indicated by elevated MitoSOX and MMPhi HSCs, were observed in iNOS-deficient mice. Furthermore, pharmacological approaches to mitigate mitochondrial stress rescued 5-FU-induced HSC death. Conversely, iNOS-NO signaling was required for demand-driven mitochondrial activity and proliferation during hematopoietic recovery, as iNOS-deficient mice and NO signaling inhibitors exhibit reduced mitochondrial activity. In conclusion, our study challenges the conventional view of iNOS-derived NO as a cytotoxic molecule and highlights its intriguing role in HSPCs. Together, our findings provide insights into the crucial role of the iNOS-NO-mitochondrial axis in regulating HSPCs and hematopoiesis.


Assuntos
Fluoruracila , Hematopoese , Células-Tronco Hematopoéticas , Mitocôndrias , Óxido Nítrico Sintase Tipo II , Óxido Nítrico , Transdução de Sinais , Animais , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Mitocôndrias/metabolismo , Fluoruracila/farmacologia , Hematopoese/genética , Óxido Nítrico/metabolismo , Regeneração , Camundongos Knockout , Medula Óssea/metabolismo , Camundongos Endogâmicos C57BL
2.
Biochim Biophys Acta Mol Cell Res ; 1868(12): 119122, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34425130

RESUMO

Neutrophils, the early responders of the immune system, eliminate intruders, but their over-activation can also instigate tissue damage leading to various autoimmune and inflammatory disease conditions. As approaches causing neutropenia are associated with immunodeficiency, targeting aberrant neutrophil infiltration offers an attractive strategy in neutrophil-centered diseases including acute lung injury. Rho GTPase family proteins Rho, Rac and Cdc42 play important role as regulators of chemotaxis in diverse systems. Rho inhibitors protected against lung injuries, while genetic Rho-deficiency exhibited neutrophil hyperactivity and exacerbated lung injury. These differential outcomes might be due to distinct effects on different cell types or activation/ inhibition of specific signaling pathways responsible for neutrophil polarity, migration and functions. In this study, we explored neutrophil centric effects of Rho signaling mitigation. Consistent with previous reports, Rho signaling inhibitor Y-27632 provided protection against acute lung injury, but without regulating LPS mediated systemic increase of neutrophils in the circulation. Interestingly, the adoptive transfer approach identified a specific defect in neutrophil migration capacity after Rho signaling mitigation. These defects were associated with loss of polarity and altered actin dynamics identified using time-lapse in vitro studies. Further analysis revealed a rescue of stimulation-dependent L-selectin shedding on neutrophils with Rho signaling inhibitor. Surprisingly, functional blocking of L-selectin (CD62L) led to defective recruitment of neutrophils into inflamed lungs. Further, single-cell level analyses identified MAPK signaling as downstream mechanism of Rho signaling and L-selectin mediated effects. p-AKT levels were diminished in detergent resistance membrane-associated signalosome upon Rho signaling inhibition and blockade of selectin. Moreover, inhibition of AKT signaling as well as selectin blocking led to defects in neutrophil polarity. Together, this study identified Rho-dependent distinct L-selectin and AKT signaling mediated regulation of neutrophil recruitment to inflamed lung tissue.


Assuntos
Neutrófilos/metabolismo , Pneumonia/metabolismo , Transdução de Sinais , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Amidas/farmacologia , Amidas/uso terapêutico , Animais , Movimento Celular , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/efeitos dos fármacos , Neutrófilos/fisiologia , Pneumonia/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas/farmacologia , Piridinas/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Selectinas/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA