Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(28): 30665-30674, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39035919

RESUMO

This study employs a comprehensive approach combining protein retrieval, sequence alignment, and molecular dynamics simulations to investigate the structural dynamics and stability of wild-type KRas and its mutated variants (G12C, G12D, G12V, and G13D). The selected protein structures were retrieved from the Protein Data Bank (PDB) and prepared by using visual molecular dynamics (VMD) software. Sequence alignment using Clustal Omega provided a detailed comparison of the amino acid sequences, focusing on key mutation sites. Molecular dynamics simulations, performed with Gromacs, revealed distinct conformational changes and stability patterns in the wild-type and mutated KRas proteins over 100 ns. Clustering analysis identified higher conformational changes in the second α-helix of the mutated variants. The root-mean-square deviation (RMSD) distribution analysis showed variant-specific conformational dynamics, with G12V and G12D exhibiting slightly higher average RMSD values. Furthermore, clustering and RMSD analyses of specific amino acid residues (12, 13, 51, and 118) highlighted their roles in maintaining overall stability and influencing structural dynamics. The results indicate that mutations at positions 12 and 13 disrupt normal cycling between wild and mutated variants, leading to the persistent activation of KRas. Additionally, principal component analysis (PCA) elucidated unique conformational dynamics in mutated variants. Free energy landscape (FEL) analysis revealed alterations in the thermodynamic stability of mutated variants compared with the wild type. Overall, this study provides a detailed understanding of the structural changes associated with oncogenic mutations in KRas, offering insights crucial for targeted therapeutic strategies in KRas-driven cancers.

2.
Int J Surg ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963728

RESUMO

This review explores the application of induced pluripotent stem cells (iPSCs) in regenerative medicine. The therapeutic significance of iPSC-derived cell therapy within regenerative medicine, emphasizes their reprogramming process and crucial role in cellular differentiation while setting the purpose and scope for the comprehensive exploration of iPSC-derived cell therapy. The subsequent sections intricately examine iPSC-derived cell therapy, unravelling the diverse derivatives of iPSCs and striking a delicate balance between advantages and limitations in therapeutic applications. Mechanisms of action, revealing how iPSC-derived cells seamlessly integrate into tissues, induce regeneration, and contribute to disease modeling and drug screening advancements is discussed. The analysis extends to clinical trials, shedding light on outcomes, safety considerations, and ethical dimensions. Challenges and concerns, including the risk of tumorigenesis and scalability issues, are explored. The focus extends to disease-specific applications, showcasing iPSC-derived cell therapy as a promising avenue for various medical conditions, supported by illustrative case studies. Future directions and research needs are outlined, identifying areas for further exploration, safety considerations and potential enhancements that will shape the future landscape of iPSC-derived therapies. In conclusion, this review provides significant understanding of iPSC-derived cell therapy's status, that contemplates the implications for regenerative medicine and personalized treatment using iPSCs, offering a comprehensive perspective on the evolving field within the confines of a dynamic and promising scientific frontier.

3.
J Cell Mol Med ; 28(11): e18389, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864691

RESUMO

Chemotherapy resistance remains a significant challenge in treating ovarian cancer effectively. This study addresses this issue by utilizing a dual drug-loaded nanomicelle system comprising albendazole (ABZ) and paclitaxel (PTX), encapsulated in a novel carrier matrix of D-tocopheryl polyethylene glycol 1000 succinate vitamin E (TPGS), soluplus and folic acid. Our objective was to develop and optimize this nanoparticulate delivery system using solvent evaporation techniques to enhance the therapeutic efficacy against ovarian cancer. The formulation process involved pre-formulation, formulation, optimization, and comprehensive characterization of the micelles. Optimization was conducted through a 32 factorial design, focusing on the effects of polymer ratios on particle size, zeta potential, polydispersity index (PDI) and entrapment efficiency (%EE). The optimal formulation demonstrated improved dilution stability, as indicated by a critical micelle concentration (CMC) of 0.0015 mg/mL for the TPGS-folic acid conjugate (TPGS-FOL). Extensive characterization included differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR), and Fourier-transform infrared spectroscopy (FTIR). The release profile exhibited an initial burst followed by sustained release over 90 h. The cytotoxic potential of the formulated micelles was superior to that of the drugs alone, as assessed by MTT assays on SKOV3 ovarian cell lines. Additionally, in vivo studies confirmed the presence of both drugs in plasma and tumour tissues, suggesting effective targeting and penetration. In conclusion, the developed TPGS-Fol-based nanomicelles for co-delivering ABZ and PTX show promising results in overcoming drug resistance, enhancing solubility, sustaining drug release, and improving therapeutic outcomes in ovarian cancer treatment.


Assuntos
Albendazol , Micelas , Neoplasias Ovarianas , Paclitaxel , Feminino , Paclitaxel/farmacologia , Paclitaxel/administração & dosagem , Paclitaxel/uso terapêutico , Paclitaxel/química , Albendazol/química , Albendazol/farmacologia , Albendazol/administração & dosagem , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Humanos , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/química , Polietilenoglicóis/química , Vitamina E/química , Ácido Fólico/química , Camundongos , Liberação Controlada de Fármacos , Tamanho da Partícula , Polivinil/química , Polímeros/química , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Cell Mol Med ; 28(8): e18302, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652115

RESUMO

The evolving landscape of personalized medicine necessitates a shift from traditional therapeutic interventions towards precision-driven approaches. Embracing this paradigm, our research probes the therapeutic efficacy of the aqueous crude extract (ACE) of Calocybe indica in cervical cancer treatment, merging botanical insights with advanced molecular research. We observed that ACE exerts significant influences on nuclear morphology and cell cycle modulation, further inducing early apoptosis and showcasing prebiotic attributes. Characterization of ACE have identified several phytochemicals including significant presence of octadeconoic acid. Simultaneously, utilizing advanced Molecular Dynamics (MD) simulations, we deciphered the intricate molecular interactions between Vascular Endothelial Growth Factor (VEGF) and Octadecanoic acid to establish C.indica's role as an anticancer agent. Our study delineates Octadecanoic acid's potential as a robust binding partner for VEGF, with comprehensive analyses from RMSD and RMSF profiles highlighting the stability and adaptability of the protein-ligand interactions. Further in-depth thermodynamic explorations via MM-GBSA calculations reveal the binding landscape of the VEGF-Octadecanoic acid complex. Emerging therapeutic innovations, encompassing proteolysis-targeting chimeras (PROTACs) and avant-garde nanocarriers, are discussed in the context of their synergy with compounds like Calocybe indica P&C. This convergence underscores the profound therapeutic potential awaiting clinical exploration. This study offers a holistic perspective on the promising therapeutic avenues facilitated by C. indica against cervical cancer, intricately woven with advanced molecular interactions and the prospective integration of precision therapeutics in modern oncology.


Assuntos
Simulação de Dinâmica Molecular , Extratos Vegetais , Neoplasias do Colo do Útero , Fator A de Crescimento do Endotélio Vascular , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Feminino , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Medicina de Precisão/métodos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Ligação Proteica , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA