Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Nutr Diabetes ; 13(1): 13, 2023 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573386

RESUMO

OBJECTIVE: Obesity, impaired glycemic control, and hepatic steatosis often coexist and are risk factors for developing dementia, and Alzheimer's disease (AD). We hypothesized that a therapeutic agent that improves glycemic control and steatosis may attenuate obesity-associated progression of dementia. We previously identified that adenoviral protein E4orf1 improves glycemic control and reduces hepatic steatosis despite obesity in mice. Here, we determined if this metabolic improvement by E4orf1 will ameliorate cognitive decline in a transgenic mouse model of AD. METHODS: Fourteen- to twenty-month-old APP/PS1/E4orf1 and APP/PS1 (control) mice were fed a high-fat diet. Cognition was determined by Morris Water Maze (MWM). Systemic glycemic control and metabolic signaling changes in adipose tissue, liver, and brain were determined. RESULTS: Compared to control, E4orf1 expression significantly improved glucose clearance, reduced endogenous insulin requirement and lowered body-fat, enhanced glucose and lipid metabolism in adipose tissue, and reduced de novo lipogenesis in the liver. In the brain, E4orf1 mice displayed significantly greater expression of genes involved in neurogenesis and amyloid-beta degradation and performed better in MWM testing. CONCLUSION: This study opens-up the possibility of addressing glycemic control and steatosis for attenuating obesity-related cognitive decline. It also underscores the potential of E4orf1 for the purpose, which needs further investigations.


Assuntos
Doença de Alzheimer , Fígado Gorduroso , Camundongos , Animais , Doença de Alzheimer/metabolismo , Glucose/metabolismo , Tecido Adiposo/metabolismo , Camundongos Transgênicos , Cognição , Modelos Animais de Doenças , Obesidade/complicações , Obesidade/metabolismo , Fatores de Risco , Fígado Gorduroso/metabolismo , Camundongos Endogâmicos C57BL
2.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36012550

RESUMO

Non-alcoholic fatty liver disease (NAFLD) covers a broad spectrum of liver diseases ranging from steatosis to cirrhosis. There are limited data on prevention of hepatic steatosis or its progression to liver disease. Here, we tested if either transgenic (Tg) doxycycline-induced expression in adipose tissue of E4orf1 (E4), an adenoviral protein, or dietary fat restriction attenuated hepatic steatosis or its progression in mice. Twelve to fourteen-week-old TgE4 mice (E4 group) and control mice were exposed to a 60% (Kcal) high fat diet (HFD) for 20 weeks, while another group of mice on HFD for 10 weeks were switched to a chow diet (chow group) for another 10 weeks. Glycemic control was determined at weeks 10 and 20. Tissues were collected for gene and protein analysis at sacrifice. Compared to control, diet reversal significantly reduced body weight in the chow group, whereas E4 expression attenuated weight gain, despite HFD. E4 mice evinced significantly improved glucose clearance, lower endogenous insulin secretion, reduced serum triglycerides, attenuated hepatic steatosis and inflammation. Interestingly, in spite of weight loss and lower liver fat, chow mice showed significant upregulation of hepatic genes involved in lipid metabolism. Despite HFD, E4 prevents hepatic lipid accumulation and progression of hepatic steatosis, while diet reversal maintains hepatic health, but is unable to improve molecular changes.


Assuntos
Dieta Hiperlipídica , Hepatopatia Gordurosa não Alcoólica , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/prevenção & controle
3.
Int J Obes (Lond) ; 46(5): 918-925, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35017714

RESUMO

BACKGROUND: Obesity is often associated with hyperinsulinemia due to insulin resistance. In mice models of hyperinsulinemia, adenovirus-derived E4orf1 protein promotes glucose disposal via insulin-independent pathway, and reduces insulin response to glucose load, described as its "Insulin Sparing Action". This is likely because less insulin is needed for disposing glucose in presence of E4orf1, however, there are other potential possibilities. This study determined if E4orf1 reduces insulin response to glucose load because it a) suppresses the ability of pancreatic ß-cells to secret insulin, or b) upregulates glucagon production by the pancreas. METHODS: C57BL/6J wild type (control) and transgenic C57BL/6J (E4orf1) mice that express E4orf1 protein in adipose tissue upon doxycycline feeding, were used. Post-doxycycline feeding, insulin and glucagon secretion in response to glibenclamide or phenylephrine were compared between the two groups. The pancreases were examined for histological changes. RESULTS: In response to glibenclamide, E4orf1 mice secreted more insulin and exhibited lower blood glucose compared to control (47.4 ± 4.4 vs 27.4 ± 3.7 mg/dl, p < 0.003), but showed no difference in glucagon secretion. Post-phenylephrine injection, no differences were observed between the two groups for glucagon or insulin, except E4orf1 mice had a lower blood glucose rise after 10-min of injection compared to the control (39.7 ± 4.7 vs. 58.3 ± 7.5 mg/dl, p < 0.05). E4orf1 mice had significantly larger pancreatic islets and higher number of islets per mm2 tissue area. Neither the size nor the number of islets met the criteria of hypertrophy or hyperplasia. CONCLUSIONS/INTERPRETATION: E4orf1 retains and may enhance the ability of the pancreases to secret insulin in response to insulin secretagogue. Glucagon does not seem to play a role in the Insulin Sparing Action of E4orf1. Overall, the histology studies support better pancreatic islet health in presence of E4orf1, compared to that in control mice. The "insulin-independent" role of E4orf1 has potential therapeutic implications in addressing hyperinsulinemia in obesity.


Assuntos
Proteínas E4 de Adenovirus , Hiperinsulinismo , Células Secretoras de Insulina , Ilhotas Pancreáticas , Proteínas E4 de Adenovirus/metabolismo , Animais , Glicemia/metabolismo , Doxiciclina , Glucagon , Glucose/metabolismo , Glibureto , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Fenilefrina
4.
Nurs Clin North Am ; 56(4): 449-464, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34749887

RESUMO

Obesity is a disease with several potential causes and contributors. This article provides a focused overview of key known causes of obesity and factors that contribute to obesity. Obesity ultimately results from impaired energy storage mechanisms, such as dysregulation of hunger, satiety, digestion, fat storage, and metabolic rate. In addition, myriad contributors promote its expression, including dietary factors, sleep quality and duration, psychological health and well-being, and tobacco cessation, among others. This article concludes with a discussion of the clinical relevance of causes and contributors in obesity prevention and treatment, which is paramount to providing effective, individualized clinical management.


Assuntos
Ingestão de Energia , Comportamento Alimentar , Obesidade , Comportamento Sedentário , Índice de Massa Corporal , Humanos , Fome , Obesidade/etiologia , Obesidade/metabolismo , Saciação
5.
J. pediatr. (Rio J.) ; 97(4): 420-425, July-Aug. 2021. tab
Artigo em Inglês | LILACS | ID: biblio-1287045

RESUMO

Abstract Objective This study aimed to investigate human adenovirus 36 (Adv36) as an associated factor for adiposity in children and adolescents aged 9-12 years. Methods This was a case-control study comparing overweight (cases) and eutrophic (controls) children and adolescents aged 9-12 years based on their body mass index in relation to human adenovirus 36 serology. Human adenovirus 36-specific neutralizing antibodies were assessed using the serum neutralization assay, and a questionnaire regarding the subjects' personal backgrounds, breastfeed history, age of starting daycare, and eating and exercise habits was also applied. Results A total of 101 (51, eutrophic; 50, overweight) children were included in the study. The Adv36 seropositivity rate was of 15.8%, which increased the chance of being overweight by 3.17 times (p = 0.049). Enrollment in a full-time daycare center before the age of 24 months increased the chance of being overweight by 2.78 times (p = 0.027). Metabolic parameters (total cholesterol and blood glucose) were insignificantly different among children who were seropositive or seronegative for human adenovirus 36. Conclusion This study concluded that excessive weight was positively associated with seropositivity for human adenovirus 36. Early enrollment in a full-time daycare was also an associated factor for obesity. Such data, confirmed in new studies, reinforces the role of human adenovirus 36 in the increase of childhood adiposity.


Assuntos
Humanos , Pré-Escolar , Criança , Adolescente , Adenovírus Humanos , Obesidade Infantil , Índice de Massa Corporal , Estudos de Casos e Controles , Adenoviridae , Adiposidade
6.
Artigo em Inglês | MEDLINE | ID: mdl-33941552

RESUMO

INTRODUCTION: Older age is associated with greater prevalence of hyperinsulinemia, type 2 diabetes, and fatty liver disease. These metabolic conditions and aging are bidirectionally linked to mitochondrial dysfunction and telomere attrition. Although effectively addressing these conditions is important for influencing the health and the lifespan, it is particularly challenging in older age. We reported that E4orf1, a protein derived from human adenovirus Ad36, reduces hyperinsulinemia, improves glucose clearance, and protects against hepatic steatosis in younger mice exposed to high fat diet (HFD). Here, we tested if E4orf1 will improve glycemic control, liver fat accumulation, mitochondrial integrity, and reduce telomere attrition in older mice. RESEARCH DESIGN AND METHODS: We used 9-month-old mice that inducibly expressed E4orf1 in adipose tissue and non-E4orf1 expressing control mice. Mice were maintained on a 60% (kcal) HFD for 20 weeks and glycemic control was determined by intraperitoneal glucose tolerance test at week 20. Following 20 weeks of HF-feeding, mice were sacrificed and liver tissues collected to determine the expression of aging genes using qRT-PCR based RT2 Profiler PCR array. RESULTS: Compared with the control mice, E4orf1 significantly improved glycemic control and reduced hepatic steatosis and fibrosis. Additionally, E4orf1 maintained markers of mitochondrial integrity and telomere attrition. CONCLUSION: E4orf1 has the potential to improve glycemic control in older mice, and the improvement persists even after longer term exposure. E4orf1 expression also maintains mitochondrial integrity and telomere attrition, thus delaying age-associated diseases. This provides strong evidence for therapeutic utility of E4orf1 in improving age-associated metabolic and cellular changes that occur with aging in humans.


Assuntos
Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Envelhecimento , Animais , Fígado Gorduroso/genética , Teste de Tolerância a Glucose , Hipoglicemiantes , Camundongos
7.
Exp Clin Endocrinol Diabetes ; 129(7): 519-527, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31340394

RESUMO

AIMS AND METHODS: The declining ability to control blood glucose with advancement of age is an important health risk factor and may lead to insulin resistance, type-2-diabetes and Alzheimer's disease. Adenovirus 36(Ad36) improves glycemic control independent of insulin signaling(insulin sparing effect) as evidenced by cell, animal and observational human studies. This property of Ad36 may be useful in correcting aging-related glucose intolerance and related health conditions. Therefore, we determined the effect of Ad36 on glycemic control in older mice, to identify the age group that best responds to Ad36. Six, 12 or 20-month old C57Bl/6 mice on chow diet were each divided into weight-matched groups(mock-infected or Ad36-infected). Body weight was recorded weekly post infection (p.i.) and fasting glucose measured(week 0, 4, 8 and 20 p.i.). Blood glucose and serum insulin were measured during glucose tolerance test(week 0 and 16 p.i.). At week 20 p.i., animals were sacrificed, blood and tissues collected. RESULTS: Mice from all age groups showed improvement in glucose clearance post Ad36 infection, but a more profound effect was observed in 6-month old mice compared with mock-infected mice. Under fed conditions though there was no difference in blood glucose at 20 wk p.i., interestingly, Ad36 reduced serum insulin in age groups old mice, compared with control mice. CONCLUSIONS: These findings suggest Ad36 infected animals improve glycemic control and clear post-prandial gluco00000se increase without increasing insulin secretion in an insulin sparing manner. These beneficial effects provide strong evidence for developing Ad36-based approaches as a novel tool to attenuate age associated glucose intolerance.


Assuntos
Infecções por Adenoviridae , Envelhecimento/metabolismo , Terapia Biológica , Glicemia , Intolerância à Glucose/sangue , Intolerância à Glucose/terapia , Insulina/sangue , Fatores Etários , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
Heliyon ; 6(10): e05261, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33102865

RESUMO

Obesity and hyperlipidemia are independent risk factors of chronic kidney disease (CKD). In mice, diet induced obesity accelerates lipogenesis, lipid accumulation, and injury in kidneys. Expression of adenoviral protein, E4orf1, improves glucose clearance and reduces endogenous insulin secretion to glucose challenge in mice. Therefore, in this pilot study, we examined, if enhanced glycemic control in HFD fed E4orf1 transgenic (E4orf1-Tg) mice, will reduce renal lipogenesis and lipid accumulation. In two separate experiments, E4orf1-Tg mice were fed 60% (kcal) high-fat diet (HFD) supplemented with doxycycline for 10-weeks or 20-weeks along with wild-type (C57BL6/J) or E4orf1-non-transgenic (E4orf1-non-Tg) control mice, respectively. Protein expression of Fatty Acid Synthase (FAS) and Acetyl-CoA Carboxylase (ACC), accumulation of triglyceride (TG) along with mRNA levels of lipid metabolism and injury markers were determined in kidneys. Renal expression of FAS and ACC, and TG content was significantly reduced in E4orf1-Tg mice compared to controls. E4orf1-Tg mice show significant increase in genes involved in mitochondrial fatty acid oxidation and oxidative stress compared to wild-type mice after 10-weeks of HFD. However, mice exposed to 20-weeks of HFD, show no difference in gene expression. E4orf1 expression reduces lipid synthesis and accumulation in kidneys despite HFD, which may be due to attenuation of hyperinsulinemia by E4orf1.

9.
Nutr Diabetes ; 10(1): 11, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286259

RESUMO

BACKGROUND: Obesity and type 2 diabetes (T2D) are closely associated with hepatic steatosis (HS), which if untreated can advance to serious liver conditions. Since insulin promotes hepatic lipogenesis, reducing hyperinsulinemia may help in treating HS. E4orf1 is an adenovirus-derived protein that improves glucose clearance independent of insulin, lowers insulin amount required for glucose disposal, and reduces HS. As a next step, we evaluated the mechanism for E4orf1-induced reduction in HS and tested that E4orf1 does not induce hypoglycemia, an important attribute for its application as a potential anti-diabetic agent. METHODS: C57Bl/6J mice that transgenically express E4orf1 in adipose tissue (E4orf-Tg) and wild-type (WT) mice received a chow diet for 6 weeks, followed by a high-fat (HF) diet for additional 10 weeks. Body composition, blood glucose, and serum insulin levels upon glucose load were measured at 0, 6, 7, and 16 weeks. Serum free fatty acid (FFA), triglyceride (TG), and hepatic TG were measured at study termination. We compared histology and the mRNA/protein markers of hepatic and adipose tissue lipid metabolism between the two groups of mice. RESULTS: On chow diet, both groups remained normoglycemic, but E4orf1 expression reduced insulin response. On HF diet, glycemic control in WT deteriorated, whereas E4orf1 significantly enhanced glycemic control, lowered insulin response, reduced hepatic triglycerides, and serum FFA. Overall, a comparison of hepatic mRNA and/or protein expression suggested that E4orf1 expression significantly decreased de novo lipogenesis (DNL) and intracellular lipid transport and increased fat oxidation and TG export. Adipose tissue mRNA and protein markers suggested that E4orf1 expression lowered DNL and increased lipolysis. CONCLUSION: Considering that E4orf1 is not secreted in circulation, we postulate that reduced endogenous insulin in E4orf1 mice indirectly contributes to reduce HS by altering hepatic lipid metabolism, including lipogenesis. This study underscores the possibility of indirectly impacting HS by manipulating adipose tissue metabolism.


Assuntos
Proteínas E4 de Adenovirus/metabolismo , Fígado Gorduroso/metabolismo , Insulina/metabolismo , Tecido Adiposo/metabolismo , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Ácidos Graxos não Esterificados/sangue , Hiperinsulinismo/metabolismo , Insulina/sangue , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Triglicerídeos/sangue
10.
Int J Obes (Lond) ; 44(7): 1607-1616, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31965070

RESUMO

OBJECTIVE: Impaired glycemic control is a common comorbidity of obesity. E4orf1(E4), an adenovirus-derived protein, reduces the activity of insulin receptor substrate (IRS), yet activates Akt and promotes the membrane translocation of GLUT4, resulting in better glycemic control in mice. To develop a clinically suitable delivery system, here we constructed and tested liposome nanoparticles (NP), to deliver E4 to preadipocytes. METHODS: Glutathione-S-transferase (GST)-tagged E4 was encapsulated in Rhodamine-phosphatidylethanolamine (PE)-tagged soy-phosphatidylcholine-NP. The NP were characterized. Preadipocytes were treated with free E4, E4 containing NP (E4 NP) or E4-free NP (void NP). RESULTS: For void and E4 NP, the average size was ~150 and 130 nm, PDI was ~0.25 and 0.27, and Zeta potential was -23 and -25, respectively. The average encapsulation efficiency (EE) was ~50%. Cells treated with E4 showed maximum GST expression and Rhodamine signals at 24 h. The presence of E4 in cells was confirmed at 24, 48, and 72 h. At 72 h after exposure, E4 NP significantly decreased pTyr-IRS, yet increased pAkt protein abundance, membrane translocation of GLUT4, and glucose uptake, compared with cells treated with void NP. Free E4 (without NP) had no effect. CONCLUSIONS: NP-mediated delivery of E4 promotes glucose uptake in preadipocytes. The next step is to test the efficacy of this clinically compatible delivery approach in vivo.


Assuntos
Proteínas E4 de Adenovirus/genética , Adipócitos/metabolismo , Vetores Genéticos , Glucose/metabolismo , Nanopartículas , Células 3T3-L1 , Animais , Insulina/metabolismo , Lipossomos , Camundongos , Transdução de Sinais
11.
Nutr Diabetes ; 9(1): 17, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31127081

RESUMO

BACKGROUND: E4orf1 protein derived from adenovirus-36 reduces glucose excursion in mice, and lowers endogenous insulin response, suggesting a reduced need for insulin. We tested if the E4orf1-mediated lowering of insulin response is due to increased tissue sensitivity to insulin, reduced ability to produce or release insulin, or a reduced need for insulin release. METHODS: Experiment 1: hyperinsulinemic-euglycemic clamps (HEC) and glucose tolerance test (GTT) were performed in high fat fed transgenic mice expressing E4orf1 or non-transgenic littermates (n = 12 each), for 4 weeks. Experiments 2, 3, and 4: E4orf1 or null vectors were expressed in rat-pancreatic ß-cell line (INS-1) for 72 h, and cells were exposed to varying levels of glucose. Cell lysates and media were collected. Experiment 5: 3T3L1-preadipocytes that express E4orf1 upon doxycycline induction, or null vector were induced with doxycycline and then exposed to protein transport inhibitor. Supernatant and cell lysate were collected. Experiment 6: 3T3L1-preadipocytes that express E4orf1 upon doxycycline induction, or null vector were co-cultured with INS-1 cells for 24 h. Media was collected. RESULTS: Experiment 1: E4orf1 transgenic mice cleared glucose faster compared to non-transgenic mice during GTT. HEC showed that E4orf1 did not alter tissue sensitivity to exogenous insulin in mice. Experiments 2, 3, and 4: in INS1 cells, E4orf1 did not alter Glut2 abundance or Akt activation, suggesting no reduction in glucose sensing or insulin synthesis, respectively. E4orf1 did not influence glucose-stimulated insulin secretion in media by INS1 cells. Experiment 5: E4orf1 was present in cell lysate, but not in media, indicating it is not a secretory protein. Experiment 6: INS1 cells released less insulin in media when co-cultured in the presence of E4orf1-expressing 3T3-L1 cells. CONCLUSIONS: Our studies support the working hypothesis that the E4orf1-mediated lowering of insulin response is not due to increased tissue sensitivity to insulin, or reduced ability to produce or release insulin, but likely to be due to a reduced need for insulin release.


Assuntos
Proteínas E4 de Adenovirus/genética , Adipócitos/efeitos dos fármacos , Glucose/farmacologia , Resistência à Insulina/fisiologia , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/farmacologia , Células 3T3-L1 , Proteínas E4 de Adenovirus/metabolismo , Adipócitos/metabolismo , Animais , Linhagem Celular , Dieta Hiperlipídica , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Transgênicos , Ratos
12.
J Diabetes Complications ; 33(3): 261-265, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30578020

RESUMO

Aging constitutes a major risk factor for the development of type-2 diabetes (T2D) where glucose tolerance declines with age, resulting in a high prevalence of T2D and impaired glucose tolerance in the elderly population. Currently more than half of the 20 million U.S. adults with T2D are above the age of 60, and the largest increase in T2D prevalence is expected in the elderly. Obesity is a causative factor for T2D associated insulin resistance and hyperglycemia. Furthermore, the aging process is accelerated by hyperglycemia and effective treatment options are limited for the vulnerable aging population. One of the mechanisms contributing to aging associated hyperglycemia is resistance to insulin-mediated glucose disposal. Chronic hyperglycemia also accelerates aging by increasing pro-inflammatory milieu leading to impaired immune function. Although currently available anti-diabetic agents improve glycemic control, they have potential serious side effects in some cases. Therefore, additional and better drugs are urgently needed for treatment of insulin resistance and aging associated health risk factors. This review presents the novel use of a microbial protein, E4orf1 as a potential anti-diabetic agent, which functions independent of insulin and obesity, highlighting the role of unique sources for future drug development.


Assuntos
Proteínas E4 de Adenovirus/uso terapêutico , Envelhecimento/fisiologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Animais , Glicemia/análise , Diabetes Mellitus Tipo 2/epidemiologia , Intolerância à Glucose , Humanos , Hiperglicemia/epidemiologia , Hipoglicemiantes/efeitos adversos , Resistência à Insulina , Obesidade/complicações , Obesidade/epidemiologia
13.
Obes Rev ; 20(4): 499-509, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30562840

RESUMO

Infectious etiology is implicated in chronic diseases such as gastric ulcer or atherosclerosis. However, "infection" is a recent term in the field of obesity. Since the first report in 1982 of obesity due to infection, several microbes have been linked to obesity. Among the adipogenic microbes, avian adenovirus SMAM-1 and human adenovirus Ad36 have been studied most extensively for the past 25 years. Here, we present a systematic review of literature about SMAM-1 and Ad36. Reports from North America, Europe, and Asia reveal strong evidence that Ad36 causes obesity in animals and paradoxically improves glycemic control, and in vitro data provides mechanistic explanation. Considering that experimental Ad36 infection of humans is unlikely, its causative role in human obesity or glycemic control has not been demonstrated unequivocally. Nonetheless, most, but not all, observational studies in children and adults link Ad36 infection to obesity and improvement in glycemic control. The E4orf1 gene of Ad36 was identified as responsible for better glycemic control. Overall, 25 years have considerably advanced knowledge about the role of infection in obesity. Potential translational benefits include the development of vaccines to prevent Ad36-induced obesity and drug development based on the E4orf1 protein to improve glycemic control.


Assuntos
Adenoviridae , Adipogenia , Obesidade/virologia , Humanos
14.
PLoS One ; 13(12): e0208427, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30521580

RESUMO

BACKGROUND: Type 2 diabetes is often linked with impaired proximal insulin signaling. Hence, a therapeutic agent that enhances cellular glucose uptake without requiring proximal insulin signaling would be desirable for improving glycemic control. The E4orf1 peptide (E4) derived from human adenovirus 36 (Ad36) promotes cellular glucose uptake in vitro and in vivo, independent of insulin. E4 bypasses a part of insulin signaling to upregulate cellular glucose uptake. We tested the hypothesis that E4 requires the distal but not proximal insulin signaling to enhance cellular glucose disposal. METHODS: 3T3-L1 preadipocytes inducibly expressing E4 or a null vector (NV) were treated with inhibitor of insulin receptor (S961), inhibitor of insulin like growth factor-1receptor (IGF-1R) (Picropodophyllin, PPP), PPP+S961, or phosphatidyl inositol-3 kinase (PI3K) inhibitor (Wortmannin, WM). We used PPP and S961 to block the proximal insulin signaling, or WM to block the distal insulin signaling. Cells were exposed to 0 or 100nM insulin. RESULTS: As expected, when the proximal or distal insulin signaling was blocked in NV cells, insulin could not enhance pAKT protein abundance, Glut4 translocation, or glucose uptake. Whereas, E4 cells significantly increased pAKT abundance, Glut4 translocation and glucose uptake independent of the presence of insulin or proximal insulin signaling. Enhanced glucose disposal in E4 cells was completely abrogated when the distal insulin signaling was blocked. CONCLUSIONS: E4 bypasses the proximal insulin signaling but uses the distal insulin signaling to activate pAkt and in turn Glut4 translocation to improve cellular glucose uptake. E4 offers a promising template to improve glycemic control when the proximal insulin signaling is impaired.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Virais/farmacologia , Células 3T3-L1 , Adenovírus Humanos/metabolismo , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Transportador de Glucose Tipo 4/metabolismo , Camundongos , Modelos Biológicos , Peptídeos/farmacologia , Fosforilação , Podofilotoxina/análogos & derivados , Podofilotoxina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Wortmanina/farmacologia
15.
Curr Obes Rep ; 6(1): 28-37, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28290153

RESUMO

PURPOSE OF REVIEW: Obesity is a multifactorial disease that is now endemic throughout most of the world. Although addressing proximate causes of obesity (excess energy intake and reduced energy expenditure) have been longstanding global health priorities, the problem has continued to worsen at the global level. RECENT FINDINGS: Numerous microbial agents cause obesity in various experimental models-a phenomena known as infectobesity. Several of the same agents alter metabolic function in human cells and are associated with human obesity or metabolic dysfunction in humans. We address the evidence for a role in the genesis of obesity for viral agents in five broad categories: adenoviridae, herpesviridae, phages, transmissible spongiform encephalopathies (slow virus), and other encephalitides and hepatitides. Despite the importance of this topic area, there are many persistent knowledge gaps that need to be resolved. We discuss factors motivating further research and recommend that future infectobesity investigation should be more comprehensive, leveraged, interventional, and patient-centered.


Assuntos
Obesidade/virologia , Viroses/complicações , Infecções por Adenoviridae/complicações , Animais , Bacteriófagos/patogenicidade , Modelos Animais de Doenças , Previsões , Infecções por Herpesviridae/complicações , Humanos , Obesidade/terapia , Doenças Priônicas/complicações
16.
Diabetes ; 66(2): 358-371, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27903748

RESUMO

Considering that impaired proximal insulin signaling is linked with diabetes, approaches that enhance glucose disposal independent of insulin signaling are attractive. In vitro data indicate that the E4ORF1 peptide derived from human adenovirus 36 (Ad36) interacts with cells from adipose tissue, skeletal muscle, and liver to enhance glucose disposal, independent of proximal insulin signaling. Adipocyte-specific expression of Ad36E4ORF1 improves hyperglycemia in mice. To determine the hepatic interaction of Ad36E4ORF1 in enhancing glycemic control, we expressed E4ORF1 of Ad36 or Ad5 or fluorescent tag alone by using recombinant adeno-associated viral vector in the liver of three mouse models. In db/db or diet-induced obesity (DIO) mice, hepatic expression of Ad36E4ORF1 but not Ad5E4ORF1 robustly improved glycemic control. In normoglycemic wild-type mice, hepatic expression of Ad36E4ORF1 lowered nonfasting blood glucose at a high dose of expression. Of note, Ad36E4ORF1 significantly reduced insulin levels in db/db and DIO mice. The improvement in glycemic control was observed without stimulation of the proximal insulin signaling pathway. Collectively, these data indicate that Ad36E4ORF1 is not a typical sensitizer, mimetic, or secretagogue of insulin. Instead, it may have insulin-sparing action, which seems to reduce the need for insulin and, hence, to reduce insulin levels.


Assuntos
Proteínas E4 de Adenovirus/metabolismo , Glicemia/metabolismo , Diabetes Mellitus/metabolismo , Hiperglicemia/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Obesidade/metabolismo , Proteínas E4 de Adenovirus/genética , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Western Blotting , Feminino , Glucose/metabolismo , Teste de Tolerância a Glucose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Músculo Esquelético/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
J Virol Methods ; 239: 69-74, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27825952

RESUMO

Adenovirus 36 (AdV36) causes weight gain in animal models, including non-human primates. In humans, AdV36-neutralizing antibodies are associated with adiposity; however, longitudinal studies in large populations are needed to clarify AdV36's contribution. The current gold standard for detection of AdV36-specific antibody is the serum neutralization assay (SNA), which requires long incubation times and highly trained personnel. The standard SNA was modified using an immunocytochemical (ICC) approach, which allows for a more rapid and objective assessment of AdV36 antibodies. Using the ICC assay, virus-infected cells were detected as early as day 1 (D1) and by D5 were detected in 100% of microtiter wells versus 20.3% of wells detected by observing the cytopathic effect. Further, human sera tested with the ICC assay at D5 had a sensitivity and specificity of 80.0% and 95.7%, respectively, when compared to the standard SNA read at D11. Thus, the ICC assay decreased assay incubation time, provided a more objective and easily interpreted assessment, and had a high degree of sensitivity and specificity in determining serological status. The more rapid and objective ICC method will make large population studies feasible, improve comparability among laboratories, and contribute to understanding the role of AdV36 in obesity.


Assuntos
Infecções por Adenovirus Humanos/diagnóstico , Adenovírus Humanos/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Imuno-Histoquímica/métodos , Testes de Neutralização , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Obesidade/virologia , Sensibilidade e Especificidade
18.
PLoS One ; 11(8): e0161275, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27537838

RESUMO

Impaired proximal insulin signaling is often present in diabetes. Hence, approaches to enhance glucose disposal independent of proximal insulin signaling are desirable. Evidence indicates that Adenovirus-derived E4orf1 protein may offer such an approach. This study determined if E4orf1 improves insulin sensitivity and downregulates proximal insulin signaling in vivo and enhances cellular glucose uptake independent of proximal insulin signaling in vitro. High fat fed mice were injected with a retrovirus plasmid expressing E4orf1, or a null vector. E4orf1 significantly improved insulin sensitivity in response to a glucose load. Yet, their proximal insulin signaling in fat depots was impaired, as indicated by reduced tyrosine phosphorylation of insulin receptor (IR), and significantly increased abundance of ectonucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1). In 3T3-L1 pre-adipocytes E4orf1 expression impaired proximal insulin signaling. Whereas, treatment with rosiglitazone reduced ENPP1 abundance. Unaffected by IR-KD (insulin receptor knockdown) with siRNA, E4orf1 significantly up-regulated distal insulin signaling pathway and enhanced cellular glucose uptake. In vivo, E4orf1 impairs proximal insulin signaling in fat depots yet improves glycemic control. This is probably explained by the ability of E4orf1 to promote cellular glucose uptake independent of proximal insulin signaling. E4orf1 may provide a therapeutic template to enhance glucose disposal in the presence of impaired proximal insulin signaling.


Assuntos
Proteínas E4 de Adenovirus/fisiologia , Glucose/metabolismo , Insulina/fisiologia , Tecido Adiposo/metabolismo , Animais , Citometria de Fluxo , Teste de Tolerância a Glucose , Immunoblotting , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/metabolismo , Transfecção/métodos
19.
Biochimie ; 121: 140-50, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26700141

RESUMO

AIMS: Exposure to human adenovirus Ad36 is causatively and correlatively linked with better glycemic control in animals and humans, respectively. Although the anti-hyperglycemic property of Ad36 may offer some therapeutic potential, it is impractical to use an infectious agent for therapeutic benefit. Cell-based studies identified that Ad36 enhances cellular glucose disposal via its E4orf1 protein. Ability to improve glycemic control in vivo is a critical prerequisite for further investigating the therapeutic potential of E4orf1. Therefore, the aim of this study was to determine the ability of E4orf1 to improve glycemic control independent of insulin despite high fat diet. MATERIALS & METHODS: 8-9wk old male C57BL/6J mice fed a high-fat diet (60% kcal) were injected with a retrovirus plasmid expressing E4orf1, or a null vector (Control). Glycemic control was determined by glucose and insulin tolerance test. Islet cell size, amount of insulin and glucagon were determined in formalin-fixed pancreas. Rat insulinoma cell line (832/13) was infected with E4orf1 or control to determine changes in glucose stimulated insulin secretion. Protein from flash frozen adipose tissue depots, liver and muscle was used to determine molecular signaling by western blotting. RESULTS: In multiple experiments, retrovirus-mediated E4orf1 expression in C57BL/6J mice significantly and reproducibly improved glucose excursion following a glucose load despite a high fat diet (60% energy). Importantly, E4orf1 improved glucose clearance without increasing insulin sensitivity, production or secretion, underscoring its insulin-independent effect. E4orf1 modulated molecular signaling in mice tissue, which included greater protein abundance of adiponectin, p-AKT and Glucose transporter Glu4. CONCLUSIONS: This study provides the proof of concept for translational development of E4orf1 as a potential anti-diabetic agent. High fat intake and impaired insulin signaling are often associated with obesity, diabetes and insulin resistance. Hence, the ability of E4orf1 to improve glycemic control despite high fat diet and independent of insulin, is particularly attractive.


Assuntos
Hipoglicemiantes/uso terapêutico , Adenoviridae/genética , Animais , Glicemia/efeitos dos fármacos , Diabetes Mellitus/sangue , Diabetes Mellitus/tratamento farmacológico , Humanos , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
20.
Biochimie ; 124: 3-10, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25450249

RESUMO

BACKGROUND: Aging and obesity are associated with elevated pro-inflammatory cytokines such as monocyte chemoattractant protein (MCP)-1 and tumor necrosis factor (TNF)α, which are linked to insulin resistance. Anti-inflammatory agents have marginal effect in improving insulin resistance. Hence, agents are needed to improve glycemic control despite the inflammation. Ad36, a human adenovirus, increases TNFα and MCP1 mRNA in adipose tissue, yet improves glycemic control in mice. Ad36 via its E4orf1 gene, up-regulates AKT/glucose transporter (Glut)-4 signaling to enhance cellular glucose uptake. OBJECTIVE: Directly test a role of Ad36, or E4orf1 in enhancing cellular glucose uptake in presence of inflammatory cytokines. METHODS: Experiment 1: 3T3-L1 preadipocytes were treated with 0, 10 or 100 ng/mL lipopolysaccharides (LPS), and infected with 0 or 5 plaque forming units (PFU) of Ad36/cell. 3T3-L1 cells that stably and inducibly express E4orf1 or a null vector (pTRE-E4orf1 or pTRE-null cells), were similarly treated with LPS and then with doxycycline, to induce E4orf1. Experiment 2: 3T3L1 preadipocytes were treated with 25 nM MCP1 or 20 nM TNFα for 16 h, followed by infection with 0 or 5 PFU of Ad36/cell. Experiment 3: pTRE-E4orf1 or -null cells were similarly treated with MCP1 or TNFα followed by doxycycline to induce E4orf1. Cellular glucose uptake and cellular signaling were determined 72 h post-Ad36 infection or E4orf1-induction, in continued presence of MCP1 or TNFα. RESULTS: In 3T3-L1 preadipocytes, Ad36, but not E4orf1, increased MCP1 and TNFα mRNA, in presence of LPS stimulation. Ad36 or E4orf1 up-regulated AKT-phosphorylation and Glut4 and increased glucose uptake (P < 0.05) in the presence of MCP1 or TNFα. CONCLUSIONS: Unlike Ad36, E4orf1 does not appear to stimulate inflammatory response. Ad36 and E4orf1 both enhance cellular glucose uptake even in presence of inflammation. Further research is needed to harness this novel and beneficial property of E4orf1 to improve hyperglycemia despite chronic inflammation that is commonly present in aging and obesity.


Assuntos
Adenoviridae/metabolismo , Tecido Adiposo/metabolismo , Quimiocina CCL2/biossíntese , Glucose/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Células 3T3-L1 , Adenoviridae/genética , Infecções por Adenoviridae/genética , Infecções por Adenoviridae/metabolismo , Tecido Adiposo/virologia , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/farmacologia , Glucose/genética , Humanos , Camundongos , Proteínas Oncogênicas Virais/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA