Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37158595

RESUMO

Potassium efflux via the two-pore K+ channel TWIK2 is a requisite step for the activation of NLRP3 inflammasome, however, it remains unclear how K+ efflux is activated in response to select cues. Here, we report that during homeostasis, TWIK2 resides in endosomal compartments. TWIK2 is transported by endosomal fusion to the plasmalemma in response to increased extracellular ATP resulting in the extrusion of K+. We showed that ATP-induced endosomal TWIK2 plasmalemma translocation is regulated by Rab11a. Deleting Rab11a or ATP-ligated purinergic receptor P2X7 each prevented endosomal fusion with the plasmalemma and K+ efflux as well as NLRP3 inflammasome activation in macrophages. Adoptive transfer of Rab11a-depleted macrophages into mouse lungs prevented NLRP3 inflammasome activation and inflammatory lung injury. We conclude that Rab11a-mediated endosomal trafficking in macrophages thus regulates TWIK2 localization and activity at the cell surface and the downstream activation of the NLRP3 inflammasome. Results show that endosomal trafficking of TWIK2 to the plasmalemma is a potential therapeutic target in acute or chronic inflammatory states.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Transporte Biológico , Caspase 1/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
3.
Nat Immunol ; 21(11): 1430-1443, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32839607

RESUMO

Macrophages demonstrate remarkable plasticity that is essential for host defense and tissue repair. The tissue niche imprints macrophage identity, phenotype and function. The role of vascular endothelial signals in tailoring the phenotype and function of tissue macrophages remains unknown. The lung is a highly vascularized organ and replete with a large population of resident macrophages. We found that, in response to inflammatory injury, lung endothelial cells release the Wnt signaling modulator Rspondin3, which activates ß-catenin signaling in lung interstitial macrophages and increases mitochondrial respiration by glutaminolysis. The generated tricarboxylic acid cycle intermediate α-ketoglutarate, in turn, serves as the cofactor for the epigenetic regulator TET2 to catalyze DNA hydroxymethylation. Notably, endothelial-specific deletion of Rspondin3 prevented the formation of anti-inflammatory interstitial macrophages in endotoxemic mice and induced unchecked severe inflammatory injury. Thus, the angiocrine-metabolic-epigenetic signaling axis specified by the endothelium is essential for reprogramming interstitial macrophages and dampening inflammatory injury.


Assuntos
Reprogramação Celular , Metabolismo Energético , Epigênese Genética , Inflamação/etiologia , Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Trombospondinas/genética , Animais , Biomarcadores , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Imunofluorescência , Inflamação/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Trombospondinas/metabolismo
4.
J Clin Invest ; 130(7): 3684-3698, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32298238

RESUMO

Unchecked inflammation is a hallmark of inflammatory tissue injury in diseases such as acute respiratory distress syndrome (ARDS). Yet the mechanisms of inflammatory lung injury remain largely unknown. Here we showed that bacterial endotoxin lipopolysaccharide (LPS) and cecal ligation and puncture-induced (CLP-induced) polymicrobial sepsis decreased the expression of transcription factor cAMP response element binding (CREB) in lung endothelial cells. We demonstrated that endothelial CREB was crucial for VE-cadherin transcription and the formation of the normal restrictive endothelial adherens junctions. The inflammatory cytokine IL-1ß reduced cAMP generation and CREB-mediated transcription of VE-cadherin. Furthermore, endothelial cell-specific deletion of CREB induced lung vascular injury whereas ectopic expression of CREB in the endothelium prevented the injury. We also observed that rolipram, which inhibits type 4 cyclic nucleotide phosphodiesterase-mediated (PDE4-mediated) hydrolysis of cAMP, prevented endotoxemia-induced lung vascular injury since it preserved CREB-mediated VE-cadherin expression. These data demonstrate the fundamental role of the endothelial cAMP-CREB axis in promoting lung vascular integrity and suppressing inflammatory injury. Therefore, strategies aimed at enhancing endothelial CREB-mediated VE-cadherin transcription are potentially useful in preventing sepsis-induced lung vascular injury in ARDS.


Assuntos
Antígenos CD/biossíntese , Caderinas/biossíntese , Endotélio Vascular/metabolismo , Interleucina-1beta/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Sepse/metabolismo , Transcrição Gênica , Animais , Antígenos CD/genética , Caderinas/genética , AMP Cíclico/genética , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Endotélio Vascular/patologia , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/genética , Camundongos , Camundongos Knockout , Síndrome do Desconforto Respiratório/genética , Síndrome do Desconforto Respiratório/patologia , Sepse/genética , Sepse/patologia
5.
Immunity ; 49(1): 56-65.e4, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29958799

RESUMO

Potassium (K+) efflux across the plasma membrane is thought to be an essential mechanism for ATP-induced NLRP3 inflammasome activation, yet the identity of the efflux channel has remained elusive. Here we identified the two-pore domain K+ channel (K2P) TWIK2 as the K+ efflux channel triggering NLRP3 inflammasome activation. Deletion of Kcnk6 (encoding TWIK2) prevented NLRP3 activation in macrophages and suppressed sepsis-induced lung inflammation. Adoptive transfer of Kcnk6-/- macrophages into mouse airways after macrophage depletion also prevented inflammatory lung injury. The K+ efflux channel TWIK2 in macrophages has a fundamental role in activating the NLRP3 inflammasome and consequently mediates inflammation, pointing to TWIK2 as a potential target for anti-inflammatory therapies.


Assuntos
Inflamassomos/metabolismo , Inflamação/fisiopatologia , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Caspase 1/deficiência , Caspase 1/metabolismo , Linhagem Celular , Inflamassomos/efeitos dos fármacos , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/fisiopatologia , Macrófagos/transplante , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/metabolismo , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/deficiência , Quinina/farmacologia , RNA Interferente Pequeno/farmacologia , Receptores Purinérgicos P2X7/deficiência , Receptores Purinérgicos P2X7/metabolismo , Sepse/metabolismo , Sepse/fisiopatologia , Transdução de Sinais/efeitos dos fármacos
6.
J Clin Invest ; 127(11): 4124-4135, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28990935

RESUMO

Acute lung injury is a leading cause of death in bacterial sepsis due to the wholesale destruction of the lung endothelial barrier, which results in protein-rich lung edema, influx of proinflammatory leukocytes, and intractable hypoxemia. Pyroptosis is a form of programmed lytic cell death that is triggered by inflammatory caspases, but little is known about its role in EC death and acute lung injury. Here, we show that systemic exposure to the bacterial endotoxin lipopolysaccharide (LPS) causes severe endothelial pyroptosis that is mediated by the inflammatory caspases, human caspases 4/5 in human ECs, or the murine homolog caspase-11 in mice in vivo. In caspase-11-deficient mice, BM transplantation with WT hematopoietic cells did not abrogate endotoxemia-induced acute lung injury, indicating a central role for nonhematopoietic caspase-11 in endotoxemia. Additionally, conditional deletion of caspase-11 in ECs reduced endotoxemia-induced lung edema, neutrophil accumulation, and death. These results establish the requisite role of endothelial pyroptosis in endotoxemic tissue injury and suggest that endothelial inflammatory caspases are an important therapeutic target for acute lung injury.


Assuntos
Caspases/fisiologia , Células Endoteliais/enzimologia , Endotoxemia/enzimologia , Lesão Pulmonar/enzimologia , Piroptose , Animais , Estudos de Casos e Controles , Caspases Iniciadoras , Células Cultivadas , Endotélio Vascular/patologia , Endotoxemia/imunologia , Feminino , Humanos , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/enzimologia , Pulmão/imunologia , Pulmão/patologia , Lesão Pulmonar/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor 4 Toll-Like/metabolismo
7.
J Cell Sci ; 130(4): 735-744, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28082421

RESUMO

Acidification of macrophage phagosomes serves an important bactericidal function. We show here that the redox-sensitive transient receptor potential (TRP) cation channel TRPM2 is expressed in the phagosomal membrane and regulates macrophage bactericidal activity through the activation of phagosomal acidification. Measurement of the TRPM2 current in phagosomes identified TRPM2 as a functional redox-sensitive cation channel localized in the phagosomal membrane. Simultaneous measurements of phagosomal Ca2+ changes and phagosome acidification in macrophages undergoing phagocytosis demonstrated that TRPM2 was required to mediate the efflux of cations and for phagosomal acidification during the process of phagosome maturation. Acidification in phagosomes was significantly reduced in macrophages isolated from Trpm2-/- mice as compared to wild type, and acidification was coupled to reduced bacterial clearance in Trpm2-/- mice. Trpm2+/+ macrophages treated with the vacuolar H+-ATPase inhibitor bafilomycin showed reduced bacterial clearance, similar to that in Trpm2-/- macrophages. Direct activation of TRPM2 using adenosine diphosphate ribose (ADPR) induced both phagosomal acidification and bacterial killing. These data collectively demonstrate that TRPM2 regulates phagosomal acidification, and is essential for the bacterial killing function of macrophages.


Assuntos
Macrófagos/metabolismo , Macrófagos/microbiologia , Fagossomos/metabolismo , Canais de Cátion TRPM/metabolismo , Ácidos/metabolismo , Animais , Feminino , Deleção de Genes , Humanos , Ativação do Canal Iônico , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos Knockout , Viabilidade Microbiana , Oxirredução , Fagossomos/microbiologia , Pseudomonas aeruginosa/fisiologia , Sepse/microbiologia , Sepse/patologia , Staphylococcus aureus/fisiologia , Canais de Cátion TRPM/deficiência
8.
Biochem Biophys Res Commun ; 360(1): 205-11, 2007 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-17588534

RESUMO

Blood can provide a valuable source for the generation of stem cells. Herein we identified a novel cell population from adult human blood, designated peripheral blood insulin-producing cells (PB-IPC). Phenotypic analysis demonstrated that PB-IPC displayed the embryonic stem (ES) cell-associated transcription factors including Oct-4 and Nanog, along with the hematopoietic markers CD9, CD45, and CD117; but lacked expression of the hematopoietic stem cell marker CD34 as well as lymphocyte and monocyte/macrophage markers. Notably, in vitro and in vivo characterization revealed that PB-IPC demonstrated characteristics of islet beta cell progenitors including the expression of beta cell-specific insulin gene transcription factors and prohormone convertases, production of insulin, formation of insulin granules, and the ability to reduce hyperglycemia and migrate into pancreatic islets after transplantation into the diabetic mice. These findings may open up new avenues for autologous blood stem cell-based therapies for diabetes.


Assuntos
Insulina/biossíntese , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Adulto , Animais , Células Cultivadas , Estudos de Viabilidade , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/classificação , Camundongos , Camundongos SCID , Pessoa de Meia-Idade
9.
Biochim Biophys Acta ; 1773(2): 192-200, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17084917

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) undergoes rapid turnover at the plasma membrane in various cell types. The ubiquitously expressed N-WASP promotes actin polymerization and regulates endocytic trafficking of other proteins in response to signaling molecules such as Rho-GTPases. In the present study we investigated the effects of wiskostatin, an N-WASP inhibitor, on the surface expression and activity of CFTR. We demonstrate, using surface biotinylation methods, that the steady-state surface CFTR pool in stably transfected BHK cells was dramatically decreased following wiskostatin treatment with a corresponding increase in the amount of intracellular CFTR. Similar effects were observed for latrunculin B, a specific actin-disrupting reagent. Both reagents strongly inhibited macroscopic CFTR-mediated Cl(-) currents in two cell types including HT29-Cl19A colonic epithelial cells. As previously reported, CFTR internalization from the cell surface was strongly inhibited by a cyclic-AMP cocktail. This effect of cyclic-AMP was only partially blunted in the presence of wiskostatin, which raises the possibility that these two factors modulate different steps in CFTR traffic. In kinetic studies wiskostatin appeared to accelerate the initial rate of CFTR endocytosis as well as inhibit its recycling back to the cell surface over longer time periods. Our studies implicate a role for N-WASP-mediated actin polymerization in regulating CFTR surface expression and channel activity.


Assuntos
Actinas/metabolismo , Carbazóis/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Propanolaminas/farmacologia , Proteína Neuronal da Síndrome de Wiskott-Aldrich/antagonistas & inibidores , Animais , Biotinilação , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Membrana Celular/efeitos dos fármacos , Colo/citologia , Colo/efeitos dos fármacos , Cricetinae , AMP Cíclico/farmacologia , Relação Dose-Resposta a Droga , Endocitose/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células HT29 , Humanos , Cinética , Modelos Biológicos , Técnicas de Patch-Clamp , Tiazolidinas/farmacologia
10.
Nat Cell Biol ; 8(9): 933-44, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16921366

RESUMO

Acidification of phagosomes has been proposed to have a key role in the microbicidal function of phagocytes. Here, we show that in alveolar macrophages the cystic fibrosis transmembrane conductance regulator Cl- channel (CFTR) participates in phagosomal pH control and has bacterial killing capacity. Alveolar macrophages from Cftr-/- mice retained the ability to phagocytose and generate an oxidative burst, but exhibited defective killing of internalized bacteria. Lysosomes from CFTR-null macrophages failed to acidify, although they retained normal fusogenic capacity with nascent phagosomes. We hypothesize that CFTR contributes to lysosomal acidification and that in its absence phagolysosomes acidify poorly, thus providing an environment conducive to bacterial replication.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Macrófagos/fisiologia , Fagocitose/fisiologia , Fagossomos/fisiologia , Pseudomonas aeruginosa/fisiologia , Animais , AMP Cíclico/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Ativação do Canal Iônico , Lisossomos/fisiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiologia , Macrófagos Alveolares/fisiologia , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Viabilidade Microbiana , Neutrófilos/metabolismo , Neutrófilos/fisiologia , Explosão Respiratória
11.
J Exp Med ; 202(7): 975-86, 2005 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-16203867

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel localized primarily at the apical or luminal surfaces of epithelial cells that line the airway, gut, and exocrine glands; it is well established that CFTR plays a pivotal role in cholera toxin (CTX)-induced secretory diarrhea. Lysophosphatidic acid (LPA), a naturally occurring phospholipid present in blood and foods, has been reported to play a vital role in a variety of conditions involving gastrointestinal wound repair, apoptosis, inflammatory bowel disease, and diarrhea. Here we show, for the first time, that type 2 LPA receptors (LPA2) are expressed at the apical surface of intestinal epithelial cells, where they form a macromolecular complex with Na+/H+ exchanger regulatory factor-2 and CFTR through a PSD95/Dlg/ZO-1-based interaction. LPA inhibited CFTR-dependent iodide efflux through LPA2-mediated Gi pathway, and LPA inhibited CFTR-mediated short-circuit currents in a compartmentalized fashion. CFTR-dependent intestinal fluid secretion induced by CTX in mice was reduced substantially by LPA administration; disruption of this complex using a cell-permeant LPA2-specific peptide reversed LPA2-mediated inhibition. Thus, LPA-rich foods may represent an alternative method of treating certain forms of diarrhea.


Assuntos
Toxina da Cólera/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Diarreia/tratamento farmacológico , Lisofosfolipídeos/farmacologia , Análise de Variância , Animais , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Toxina da Cólera/toxicidade , Cricetinae , AMP Cíclico/metabolismo , Proteínas do Citoesqueleto/metabolismo , Diarreia/induzido quimicamente , Proteína 4 Homóloga a Disks-Large , Células Epiteliais/metabolismo , Humanos , Immunoblotting , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Trocadores de Sódio-Hidrogênio , Proteína da Zônula de Oclusão-1
12.
Biochem Biophys Res Commun ; 330(4): 1073-9, 2005 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-15823553

RESUMO

AMP-activated protein kinase (AMPK) is an important signaling effector that couples cellular metabolism and function. The effects of AMPK activation on pancreatic beta-cell function remain unresolved. We used 5-amino-imidazole carboxamide riboside (AICAR), an activator of AMPK, to define the signaling mechanisms linking the activation of AMPK with insulin secretion. Application of 300 microM AICAR to mouse islets incubated in 5-14 mM glucose significantly increased AMPK activity and potentiated insulin secretion. AICAR inhibited ATP-sensitive K(+) (K(ATP)) channels and increased the frequency of glucose-induced calcium oscillations in islets incubated in 8-14 mM glucose. At lower glucose concentration (5mM) AICAR did not affect K(ATP) activity or intracellular ([Ca(2+)](i)). AICAR also did not inhibit (86)Rb(+) efflux from islets isolated from Sur1(-/-) mice that lack K(ATP) channels yet significantly potentiated glucose stimulated insulin secretion. Our data suggest that AICAR stimulates insulin secretion by both K(ATP) channel-dependent and -independent pathways.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Glucose/farmacologia , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Complexos Multienzimáticos/metabolismo , Canais de Potássio/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Ribonucleosídeos/farmacologia , Proteínas Quinases Ativadas por AMP , Transportadores de Cassetes de Ligação de ATP/genética , Trifosfato de Adenosina/fisiologia , Animais , Cálcio/metabolismo , Sinergismo Farmacológico , Ativação Enzimática/efeitos dos fármacos , Técnicas In Vitro , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Canais de Potássio Corretores do Fluxo de Internalização , Receptores de Droga , Receptores de Sulfonilureias
13.
Science ; 304(5676): 1515-8, 2004 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-15178804

RESUMO

Strategies for inhibiting phagolysosome fusion are essential for the intracellular survival and replication of many pathogens. We found that the lysosomal synaptotagmin Syt VII is required for a mechanism that promotes phagolysosomal fusion and limits the intracellular growth of pathogenic bacteria. Syt VII was required for a form of Ca2+-dependent phagolysosome fusion that is analogous to Ca2+-regulated exocytosis of lysosomes, which can be triggered by membrane injury. Bacterial type III secretion systems, which permeabilize membranes and cause Ca2+ influx in mammalian cells, promote lysosomal exocytosis and inhibit intracellular survival in Syt VII +/+ but not -/- cells. Thus, the lysosomal repair response can also protect cells against pathogens that trigger membrane permeabilization.


Assuntos
Bactérias/crescimento & desenvolvimento , Proteínas de Ligação ao Cálcio , Membrana Celular/fisiologia , Glicoproteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Salmonella typhimurium/crescimento & desenvolvimento , Animais , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células CHO , Cálcio/metabolismo , Células Cultivadas , Cricetinae , Endocitose , Exocitose , Listeria monocytogenes/crescimento & desenvolvimento , Lisossomos/microbiologia , Lisossomos/fisiologia , Macrófagos/microbiologia , Glicoproteínas de Membrana/genética , Camundongos , Mutação , Proteínas do Tecido Nervoso/genética , Permeabilidade , Fagossomos/microbiologia , Fagossomos/fisiologia , Salmonella typhimurium/metabolismo , Sinaptotagminas , Vacúolos/microbiologia , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/crescimento & desenvolvimento
14.
J Biol Chem ; 278(5): 2876-85, 2003 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-12446681

RESUMO

Syntaxin 1A binds to and inhibits epithelial cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channels and synaptic Ca(2+) channels in addition to participating in SNARE complex assembly and membrane fusion. We exploited the isoform-specific nature of the interaction between syntaxin 1A and CFTR to identify residues in the H3 domain of this SNARE (SNARE motif) that influence CFTR binding and regulation. Mutating isoform-specific residues that map to the surface of syntaxin 1A in the SNARE complex led to the identification of two sets of hydrophilic residues that are important for binding to and regulating CFTR channels or for binding to the syntaxin regulatory protein Munc-18a. None of these mutations affected syntaxin 1A binding to other SNAREs or the assembly and stability of SNARE complexes in vitro. Conversely, the syntaxin 1A-CFTR interaction was unaffected by mutating hydrophobic residues in the H3 domain that influence SNARE complex stability and Ca(2+) channel regulation. Thus, CFTR channel regulation by syntaxin 1A involves hydrophilic interactions that are mechanistically distinct from the hydrophobic interactions that mediate SNARE complex formation and Ca(2+) channel regulation by this t-SNARE.


Assuntos
Antígenos de Superfície/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Transporte Vesicular , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular , Canais de Cloreto/metabolismo , Cricetinae , Regulador de Condutância Transmembrana em Fibrose Cística/química , Eletrofisiologia , Feminino , Humanos , Cinética , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oócitos/fisiologia , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , Proteínas Qb-SNARE , Proteínas Qc-SNARE , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas SNARE , Sintaxina 1 , Transfecção , Xenopus
15.
Proc Natl Acad Sci U S A ; 99(19): 12477-82, 2002 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-12209004

RESUMO

Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate membrane fusion reactions in eukaryotic cells by assembling into complexes that link vesicle-associated SNAREs with SNAREs on target membranes (t-SNAREs). Many SNARE complexes contain two t-SNAREs that form a heterodimer, a putative intermediate in SNARE assembly. Individual t-SNAREs (e.g., syntaxin 1A) also regulate synaptic calcium channels and cystic fibrosis transmembrane conductance regulator (CFTR), the epithelial chloride channel that is defective in cystic fibrosis. Whether the regulation of ion channels by individual t-SNAREs is related to SNARE complex assembly and membrane fusion is unknown. Here we show that CFTR channels are coordinately regulated by two cognate t-SNAREs, SNAP-23 (synaptosome-associated protein of 23 kDa) and syntaxin 1A. SNAP-23 physically associates with CFTR by binding to its amino-terminal tail, a region that modulates channel gating. CFTR-mediated chloride currents are inhibited by introducing excess SNAP-23 into HT29-Cl.19A epithelial cells. Conversely, CFTR activity is stimulated by a SNAP-23 antibody that blocks the binding of this t-SNARE to the CFTR amino-terminal tail. The physical and functional interactions between SNAP-23 and CFTR depend on syntaxin 1A, which binds to both proteins. We conclude that CFTR channels are regulated by a t-SNARE complex that may tune CFTR activity to rates of membrane traffic in epithelial cells.


Assuntos
Antígenos de Superfície/metabolismo , Proteínas de Transporte/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Transporte Vesicular , Animais , Antígenos de Superfície/química , Antígenos de Superfície/genética , Sítios de Ligação , Células COS , Proteínas de Transporte/química , Proteínas de Transporte/genética , Linhagem Celular , Membrana Celular/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Ativação do Canal Iônico , Células L , Substâncias Macromoleculares , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp , Proteínas Qb-SNARE , Proteínas Qc-SNARE , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas SNARE , Sintaxina 1
16.
Nat Cell Biol ; 4(4): 279-85, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11901421

RESUMO

Secretion of lysosomes and related organelles is important for immune system function. High-resolution membrane capacitance techniques were used to track changes in membrane area in single phagocytes during opsonized polystyrene bead uptake and release. Secretagogue stimulation of cells preloaded with beads resulted in immediate vesicle discharge, visualized as step increases in capacitance. The size of the increases were consistent with phagosome size. This hypothesis was confirmed by direct observation of dye release from bead-containing phagosomes after secretagogue stimulation. Capacitance recordings of exocytosis were correlated with quantal free radical release, as determined by amperometry. Thus, phagosomes undergo regulated secretion in macrophages, one function of which may be to deliver sequestered free radicals to the extracellular space.


Assuntos
Radicais Livres , Fagossomos/metabolismo , Proteínas de Transporte Vesicular , Animais , Linhagem Celular , DNA Complementar/metabolismo , Eletrofisiologia , Exocitose , Glutationa Transferase/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Imunoglobulina G/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Microscopia Eletrônica , Microscopia de Fluorescência , Proteínas Qa-SNARE , Quinacrina/farmacologia , Proteínas Recombinantes de Fusão/metabolismo , Proteínas SNARE , Superóxidos/metabolismo , Fatores de Tempo
17.
J Cell Sci ; 115(Pt 4): 783-91, 2002 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-11865034

RESUMO

Activation of the chloride selective anion channel CFTR is stimulated by cAMP-dependent phosphorylation and is regulated by the target membrane t-SNARE syntaxin 1A. The mechanism by which SNARE proteins modulate CFTR in secretory epithelia is controversial. In addition, controversy exists as to whether PKA activates CFTR-mediated Cl(-) currents (I(CFTR)) by increasing the number of channels in the plasma membrane and/or by stimulating membrane-resident channels. SNARE proteins play a well known role in exocytosis and have recently been implicated in the regulation of ion channels; therefore this investigation sought to resolve two related issues: (a) is PKA activation or SNARE protein modulation of CFTR linked to changes in membrane turnover and (b) does syntaxin 1A modulate CFTR via direct effects on the gating of channels residing in the plasma membrane versus alterations in membrane traffic. Our data demonstrate that syntaxin 1A inhibits CFTR as a result of direct protein-protein interactions that decrease channel open probability (P(o)) and serves as a model for other SNARE protein-ion channel interactions. We also show that PKA activation can enhance membrane trafficking in some epithelial cell types, and this is independent from CFTR activation or syntaxin 1A association.


Assuntos
Antígenos de Superfície/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Mucosa Respiratória/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Células Cultivadas , Condutividade Elétrica , Humanos , Ativação do Canal Iônico , Cinética , Proteínas de Membrana/metabolismo , Mucosa Respiratória/fisiologia , Sintaxina 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA