Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Ethnopharmacol ; 330: 118191, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38621468

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Mijiao (MJ) formula, a traditional herbal remedy, incorporates antlers as its primary constituent. It can effectively treat osteoporosis (OP), anti-aging, enhance immune activity, and change depression-like behavior. In this study, we investigated that MJ formula is a comprehensive treatment strategy, and may provide a potential approach for the clinical treatment of postmenopausal osteoporosis. AIM OF THE STUDY: The purpose of this study was to determine whether MJ formula promoted osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and improved osteoporosis in ovariectomized rats by regulating the NAT10-mediated Runx2 mRNA ac4C modification. MATERIALS AND METHODS: Female Sprague-Dawley (SD) rats were used to investigate the potential therapeutic effect of MJ formula on OP by creating an ovariectomized (OVX) rat model. The expression of osteogenic differentiation related proteins in BMSCs was detected in vivo, indicating their role in promoting bone formation. In addition, the potential mechanism of its bone protective effect was explored via in vitro experiments. RESULTS: Our study showed that MJ formula significantly mitigated bone mass loss in the OVX rat model, highlighting its potential as an OP therapeutic agent. We found that the possible mechanism of action was the ability of this formulation to stabilize Runx2 mRNA through NAT10-mediated ac4C acetylation, which promoted osteogenic differentiation of BMSCs and contributed to the enhancement of bone formation. CONCLUSIONS: MJ formula can treat estrogen deficiency OP by stabilizing Runx2 mRNA, promoting osteogenic differentiation and protecting bone mass. Conceivably, MJ formulation could be a safe and promising strategy for the treatment of osteoporosis.


Assuntos
Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core , Medicamentos de Ervas Chinesas , Células-Tronco Mesenquimais , Osteogênese , Osteoporose , Ovariectomia , RNA Mensageiro , Animais , Feminino , Ratos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Ratos Sprague-Dawley , RNA Mensageiro/metabolismo
2.
J Biomater Sci Polym Ed ; 35(2): 190-205, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37851402

RESUMO

Nowadays, chemotherapy is a common clinical treatment for cancer, but it still faces many limitations and challenges. Therefore, the combination of chemotherapy and other treatments often enhances the effectiveness of treatments. Herein, an injectable hydrogel of PC10ARGD/Cu2+/DOX based on Cu2+, hydrophilic doxorubicin (DOX), and genetically engineered polypeptide PC10ARGD was prepared. First, Cu2+ was attached to the histidines in the PC10ARGD polypeptide by the coordination reaction to form PC10ARGD/Cu2+ hydrogel, then the PC10ARGD/Cu2+/DOX hydrogel was prepared by encapsulating the DOX into the PC10ARGD/Cu2+ hydrogel. The results of scanning electron microscopy showed that the PC10ARGD/Cu2+/DOX hydrogel displayed loose porous morphology. In vitro, reactive oxygen species production results showed that the PC10ARGD/Cu2+/DOX hydrogel could continuously produce ·OH in the presence of H2O2. In vitro MTT results showed that the PC10ARGD/Cu2+/DOX hydrogel had a good inhibitory effect on cell activity. Flow cytometry further confirmed the antitumor effect of the PC10ARGD/Cu2+/DOX hydrogel. In vivo experiment results showed that the tumor volume of mice treated with the PC10ARGD/Cu2+/DOX hydrogel was significantly inhibited compared with control groups, which was due to the combination of chemodynamic and chemotherapy. The results of body weight and blood analysis of mice showed that the PC10ARGD/Cu2+/DOX hydrogel possessed good biocompatibility.


Assuntos
Hidrogéis , Peróxido de Hidrogênio , Animais , Camundongos , Linhagem Celular Tumoral , Doxorrubicina , Peptídeos
3.
Int Heart J ; 64(4): 732-740, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37518354

RESUMO

To investigate the possible effect of FoxO on coxsackievirus B3 (CVB3) -induced cardiomyocyte inflammation and apoptosis via modulation of the TLR4/NF-κB signaling pathway.Viral myocarditis (VMC) models were establied via CVB3 infection both in vivo and in vitro. Western blotting was adopted to detect FoxO1 and TLR4 expressions in myocardial tissues and cells. Cardiomyocytes of suckling mouse were divided into the control, CVB3, CVB3 + pcDNA, CVB3 + pcDNA-FoxO1, CVB3 + TLR4 siRNA, and CVB3 + pcDNA-FoxO1 + TLR4 siRNA groups. Flow cytometry was employed to evaluate cell apoptosis. The expressions of inflammatory factors including TNF-α, IL-1ß, and IL-6 were detected via quantitative reverse transcriptase polymerase chain reaction and enzyme-linked immunosorbent assay. Then, TLR4/NF-κB pathway-related proteins were determined via Western blotting.VMC mice had increased FoxO1 and TLR4 expressions in myocardial tissues. Cardiomyocytes with CVB3 infection also had upregulated protein expressions of p-FoxO1/FoxO1 and TLR4. Compared with those in the control group, the cardiomyocytes in the CVB3 group were increased in LDH and CK-MB levels, cell apoptosis rate and inflammatory factors (TNF-α, IL-1ß and IL-6), as well as protein expressions of TLR4 and p-p65/p65. Compared with those in the CVB3 group, the cardiomyocytes in the CVB3 + pcDNA-FoxO1 group were further upregulated whereas those in the CVB3 +TLR4 siRNA group were downregulated in the aforementioned indicators. Furthermore, TLR4 siRNA can reverse the effect of pcDNA-FoxO1 on the aggravation of cardiomyocyte injury induced by CVB3 infection.FoxO1 can upregulate the TLR4/NF-κB signaling pathway to promote cardiomyocyte apoptosis and inflammatory injury in CVB3-induced VMC.


Assuntos
Infecções por Coxsackievirus , Miocardite , Camundongos , Animais , Miocardite/metabolismo , Miócitos Cardíacos/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Receptor 4 Toll-Like/metabolismo , Inflamação/metabolismo , Transdução de Sinais , Apoptose , Infecções por Coxsackievirus/metabolismo , RNA Interferente Pequeno
4.
Genet Mol Biol ; 46(2): e20220323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37335919

RESUMO

Hepatocellular carcinoma (HCC) is the most common type of liver malignancy with high incidence and poor prognosis. Transmembrane protein 147 (TMEM147) has been implicated in the development of colon cancer. However, the role of TMEM147 in HCC remains unclear. In this study, data of 371 HCC tissues, 50 adjacent nontumor tissues, and 110 normal liver tissues were retrieved from the TCGA and GTEx databases. TMEM147 expression was found to be increased in HCC tissues. High expression of TMEM147 was related to poor prognosis, and TMEM147 was confirmed to be an independent prognostic factor for HCC patients. A receiver operating characteristics (ROC) analysis was performed and showed that the diagnostic efficacy of TMEM147 was significantly higher than that of AFP (0.908 versus 0.746, p < 0.001). Furthermore, TMEM147 promoted tumor immune infiltration, and macrophages were the immune cells that predominantly expressed TMEM147 in HCC. Further analysis revealed that TMEM147 mainly impacted the ribosome pathway, and CTCF, MLLT1, TGIF2, ZNF146, and ZNF580 were predicted to be the upstream transcription factors for TMEM147 in HCC. These results suggest that TMEM147 serves as a promising biomarker for diagnosis and prognosis and may potentially become a therapeutic target for HCC.

6.
Life Sci ; 308: 120983, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36165859

RESUMO

AIMS: Family with sequence similarity 96 member A and B (FAM96A and FAM96B) are two highly conserved homologous proteins belonging to MIP18 family. Some studies have shown that FAM96A and FAM96B are significantly down-regulated in human gastrointestinal stromal tumors, colon cancer, and liver cancer. However, the molecular mechanisms of FAM96A/B in breast cancer are unknown. This work aims to explore the roles of FAM96A/B in breast cancer progression. MAIN METHODS: Specific siRNAs were used to down-regulate FAM96A/B expression, and recombinant plasmids were used to up-regulate FAM96A/B expression in breast cancer cells. Cell proliferation was measured using MTT and colony formation. Cell cycle and apoptosis were detected by flow cytometry. Cell migration and invasion were examined by wound healing and transwell assays. The relationships among FAM96A/B, EMT and Wnt/ß-catenin pathway were determined by analyzing expression changes of classical markers. KEY FINDINGS: We found that FAM96A/B expression was down-regulated in breast cancer. FAM96A/B overexpression suppressed breast cancer cell proliferation, invasion and migration, induced cell apoptosis and caused cell cycle arrest. Conversely, FAM96A/B knockdown exhibited the opposite effects. Moreover, our data demonstrated that FAM96A/B overexpression suppressed EMT and Wnt/ß-catenin pathway, while FAM96A/B knockdown showed the promoting effects on EMT and Wnt/ß-catenin pathway. Furthermore, a Wnt pathway inhibitor, XAV-939 reversed the promoting effects of FAM96A/B knockdown on breast cancer progression. SIGNIFICANCE: Our findings suggest that FAM96A/B may function as new tumor suppressor genes and inhibit breast cancer progression via modulating Wnt/ß-catenin pathway, which can provide the potential markers for breast cancer diagnosis and therapy.


Assuntos
Neoplasias da Mama , Via de Sinalização Wnt , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Genes Supressores de Tumor , Humanos , Invasividade Neoplásica/genética , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
7.
Transl Oncol ; 22: 101396, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35580385

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) remains an aggresive tumor with poor survival rates. Krüppel-like factor 4 (KLF4) is known to be involved in progression of NSCLC; however, the detailed mechanism by which KLF4 regulates the progression of NSCLC remains unclear. METHODS: In order to investigate the function of KLF4 in NSCLC, cell proliferation was measured by MTT and colony formation assays. The migration and invasion of NSCLC cells were detected via wound healing and Transwell assays, respectively. Then, the interaction between KLF4 and MSI2 was confirmed using a dual-luciferase reporter assay, and the mechanism by which KLF4 regulates the tumorigenesis of NSCLC was assessed by RT-qPCR and Western blotting. RESULTS: The results showed that KLF4 was downregulated, while MSI2 was upregulated in NSCLC. Additionally, KLF4 could inhibit transcription of MSI2, and overexpression of KLF4 or knockdown of MSI2 could inhibit the proliferation, migration and invasion of NSCLC cells. Moreover, KLF4 could inhibit JAK2/STAT3 signalling pathway. CONCLUSIONS: In conclusion, KLF4 significantly inhibited the proliferation, invasion and migration of NSCLC cells via inactivation of MSI2/JAK2/STAT3 signalling pathway. Thereby, our finding might shed new lights on exploring the new strategies against NSCLC.

8.
Biomed Mater ; 17(1)2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34731839

RESUMO

In this study, we established a procedure to prepare a Semaphorin4D (SEMA4D)-immobilized titanium surface and explored its effects on macrophage behaviors in an endothelial cell/macrophage indirect coculture model. The SEMA4D-bovine serum albumin complex was immobilized onto a preprocessed poly L-lysine titanium surface through NaOH hydrothermal treatment and self-assembly technology. All titanium specimens were examined for surface microstructure, surface element composition, and surface wettability by field emission scanning electron microscopy, x-ray photoelectron spectroscopy (XPS), and water contact angle measurement, respectively. Subsequently, we constructed an endothelial cell/macrophage indirect coculture model and evaluated the activation of NF-κB signaling pathway and the expression of proinflammatory cytokines (TNFα, IL-6, and IL-1ß) in macrophages. In XPS analysis, the SEMA4D-immobilized titanium surface appeared as a loose porous structure covered with uniform film, which exhibited better hydrophilicity than the control smooth titanium surface. In the indirect coculture model, SEMA4D attenuated the activation of NF-κB signaling pathway of lipopolysaccharide-stimulated THP-1 macrophages, thereby downregulating the expression of proinflammatory cytokines in macrophages. In conclusion, SEMA4D could be immobilized on titanium surfaces through NaOH hydrothermal treatment and self-assembly technology. Meanwhile, SEMA4D immobilization altered the characteristics of the titanium surfaces, which negatively regulated macrophage behaviors in the endothelial cell/macrophage indirect coculture model.


Assuntos
Macrófagos , Titânio , Anti-Inflamatórios/farmacologia , Antígenos CD , Técnicas de Cocultura , Células Endoteliais , Macrófagos/metabolismo , Semaforinas , Propriedades de Superfície , Titânio/química
9.
BMC Pediatr ; 21(1): 153, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33784990

RESUMO

BACKGROUND: Hirschsprung disease (HSCR) is a congenital disorder characterized by the absence of intramural ganglion cells in the distal gastrointestinal tract (GI), which results in tonic contraction of the aganglionic gut segment and functional intestinal obstruction. Recent studies have suggested NADPH oxidase 5 (NOX5) as a candidate risk gene for HSCR. In this study, we examined the function of NOX5 to verify its role in the development of the enteric nervous system (ENS). METHODS: HSCR tissue specimens (n = 10) were collected at the time of pull-through surgery and control specimens (n = 10) were obtained at the time of colostomy closure in patients. The NOX5 expression in aganglionic and ganglionic segments of HSCR colon and normal colon were analyzed by immunohistochemistry (IHC), western blot and real-time quantitative PCR (qPCR). The gene expression levels and spatiotemporal expression spectrum of NOX5 in different development stages of zebrafish embryo were determined using qPCR and in-situ hybridization (ISH). The enteric nervous system in NOX5 Morpholino (MO) knockdown and wild type (WT) zebrafish embryo was analyzed by whole-mount immunofluorescence (IF). Intestinal transit assay was performed to analyze the gastrointestinal motility in NOX5 knockdown and control larvae. RESULTS: NOX5 is strongly expressed in the ganglion cells in the proximal segment of HSCR colons and all segments of normal colons. Moreover, the expression of NOX5 is markedly decreased in the aganglionic segment of HSCR colon compared to the ganglionic segment. In zebrafish, NOX5 mRNA level is the highest in the one cell stage embryos and it is decreased overtime with the development of the embryos. Interestingly, the expression of NOX5 appears to be enriched in the nervous system. However, the number of neurons in the GI tract and the GI motility were not affected upon NOX5 knockdown. CONCLUSIONS: Our study shows that NOX5 markedly decreased in the aganglionic segment of HSCR but didn't involve in the ENS development of zebrafish. It implies that absence of intestinal ganglion cells may lead to down-regulation of NOX5.


Assuntos
Doença de Hirschsprung , Animais , Gânglios , Doença de Hirschsprung/genética , Humanos , NADPH Oxidase 5 , Peixe-Zebra
10.
Front Oncol ; 11: 812993, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35145910

RESUMO

Prognostic biomarkers that can reliably predict the disease-free survival (DFS) of locally advanced cervical cancer (LACC) are needed for identifying those patients at high risk for progression, who may benefit from a more aggressive treatment. In the present study, we aimed to construct a multiparametric MRI-derived radiomic signature for predicting DFS of LACC patients who underwent concurrent chemoradiotherapy (CCRT). METHODS: This multicenter retrospective study recruited 263 patients with International Federation of Gynecology and Obetrics (FIGO) stage IB-IVA treated with CCRT for whom pretreatment MRI scans were performed. They were randomly divided into two groups: primary cohort (n = 178) and validation cohort (n = 85). The LASSO regression and Cox proportional hazard regression were conducted to construct the radiomic signature (RS). According to the cutoff of the RS value, patients were dichotomized into low- and high-risk groups. Pearson's correlation and Kaplan-Meier analysis were conducted to evaluate the association between the RS and DFS. The RS, the clinical model incorporating FIGO stage and lymph node metastasis by the multivariate Cox proportional hazard model, and a combined model incorporating RS and clinical model were constructed to estimate DFS individually. RESULTS: The final radiomic signature consisted of four radiomic features: T2W_wavelet-LH_ glszm_Size Zone NonUniformity, ADC_wavelet-HL-first order_ Median, ADC_wavelet-HH-glrlm_Long Run Low Gray Level Emphasis, and ADC_wavelet _LL_gldm_Large Dependence High Gray Emphasis. Higher RS was significantly associated with worse DFS in the primary and validation cohorts (both p<0.001). The RS demonstrated better prognostic performance in predicting DFS than the clinical model in both cohorts (C-index, 0.736-0.758 for RS, and 0.603-0.649 for clinical model). However, the combined model showed no significant improvement (C-index, 0.648, 95% CI, 0.571-0.685). CONCLUSIONS: The present study indicated that the multiparametric MRI-derived radiomic signature could be used as a non-invasive prognostic tool for predicting DFS in LACC patients.

11.
FEBS J ; 288(5): 1447-1456, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33070450

RESUMO

Invasion and metastasis are the basic characteristics and important markers of malignant tumors, which are also the main cause of death in cancer patients. Epithelial-mesenchymal transition (EMT) is recognized as the first step of tumor invasion and metastasis. Many studies have demonstrated that cell fusion is a common phenomenon and plays a critical role in cancer development and progression. At present, cancer stem cell fusion has been considered as a new mechanism of cancer metastasis. Mesenchymal stromal/stem cell (MSC) is a kind of adult stem cells with high self-renewal ability and multidifferentiation potential, which is used as a very promising fusogenic candidate in the tumor microenvironment and has a crucial role in cancer progression. Many research results have shown that MSCs are involved in the regulation of tumor growth and metastasis through cell fusion. However, the role of cell fusion between MSCs and malignant cells in tumor growth and metastasis is still controversial. Several studies have demonstrated that MSCs can enhance malignant characteristics, promoting tumor growth and metastasis by fusing with malignant cells, while other conflicting reports believe that MSCs can reduce tumorigenicity upon fusion with malignant cells. In this review, we summarize the recent research on cell fusion events between MSCs and malignant cells in tumor growth and metastasis. The elucidation of the molecular mechanisms between MSC fusion and tumor metastasis may provide an effective strategy for tumor biotherapy.


Assuntos
Fusão Celular , Peptídeos e Proteínas de Sinalização Intercelular/genética , Metaloproteinase 9 da Matriz/genética , Células-Tronco Mesenquimais/metabolismo , Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Comunicação Celular , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Células-Tronco Mesenquimais/patologia , Metástase Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Transdução de Sinais , Microambiente Tumoral/genética
12.
Front Cell Dev Biol ; 8: 840, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015042

RESUMO

BACKGROUND: MicroRNA-497 (miR-497) has been implicated in several cancers. Increasing studies demonstrate the role of AKT2 in cancers as an oncogene which is closely associated with tumor aggressiveness by enhancing cancer cell survival, migration and invasion However, miR-497/AKT2 axis in non-small cell lung cancer (NSCLC) remains unclear. METHODS: Quantitative real-time PCR (qRT-PCR) was used to quantify the expression of miR-497 and its target gene. The function of miR-497 in lung cancer was investigated through in vitro and in vivo assays (cell proliferation assay, cell migration assay, colony formation assay, flow cytometry assay, immunoblotting and tumorigenesis assay). Luciferase reporter assay was conducted to confirm the target gene of miR-497. RESULTS: In this study, we found that miR-497 was significantly downregulated in tumor tissues and blood samples of lung cancer patients. To understand the potential mechanism of miR-497 in inhibiting tumor growth, we showed that miR-497 blocked the activation of AKT2 and regulated cell proliferation, cell migration, colony formation and increases chemosensitivity of H1299 cells to cisplatin by inhibiting AKT2. MiR-497 also inhibited tumor growth and suppressed expression of AKT2 at the protein and mRNA levels in mouse xenograft tumors. CONCLUSION: Taken together, our findings indicated that miR-497 suppresses the tumor growth by targeting AKT2, and the miR-497/AKT2 axis is a potential therapeutic target for NSCLC intervention.

13.
Front Immunol ; 11: 1253, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719674

RESUMO

Opioid abuse alters the functions of immune cells in both in vitro and in vivo systems, including macrophages. Here, we investigated the effects of methadone, a widely used opioid receptor agonist for treatment of opiate addiction, on the expression of intracellular viral restriction factors and HIV replication in primary human macrophages. We showed that methadone enhanced the HIV infectivity in primary human macrophages. Mechanistically, methadone treatment of macrophages reduced the expression of interferons (IFN-ß and IFN-λ2) and the IFN-stimulated anti-HIV genes (APOBEC3F/G and MxB). In addition, methadone-treated macrophages showed lower levels of several anti-HIV microRNAs (miRNA-28, miR-125b, miR-150, and miR-155) compared to untreated cells. Exogenous IFN-ß treatment restored the methadone-induced reduction in the expression of the above genes. These effects of methadone on HIV and the antiviral factors were antagonized by pretreatment of cells with naltrexone. These findings provide additional evidence to support further studies on the role of opiates, including methadone, in the immunopathogenesis of HIV disease.


Assuntos
Infecções por HIV/imunologia , Infecções por HIV/virologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/virologia , Metadona/farmacologia , Biomarcadores , Células Cultivadas , Quimiocina CCL4/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Infecções por HIV/metabolismo , HIV-1/imunologia , Humanos , Interferons/genética , Interferons/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , MicroRNAs/genética , RNA Viral , Replicação Viral/efeitos dos fármacos
14.
J Exerc Nutrition Biochem ; 23(2): 28-33, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31337203

RESUMO

PURPOSE: Recent studies have shown that glucose-6-phosphate isomerase (GPI)-which is a glycolysis interconversion enzyme-reduces oxidative stress. However, these studies are limited to tumors such as fibrosarcoma, and there are no studies that have examined the effects of exercise on GPI expression in mice skeletal muscle. Furthermore, GPI acts in an autocrine manner thorough its receptor, autocrine motility factor receptor (AMFR); therefore, we investigated expression level changes of secreted GPI from skeletal muscle in in vitro study to examine the potential role of GPI on skeletal muscle. METHODS: First, we performed an in vitro study, to identify the condition that upregulates GPI levels in skeletal muscle cells; we treated C2C12 muscle cells with an exercise-mimicking chemical, AICAR. AICAR treatment upregulated GPI expression level in C2C12 cell and its secretomes. To confirm the direct effect of GPI on skeletal muscle cells, we treated C2C12 cells with GPI recombinant protein. RESULTS: We found that GPI improved the viability of C2C12 cells. In the in vivo study, the exercise-treated mice group showed upregulated GPI expression in skeletal muscle. Based on the in vitro study results, we speculated that expression level of GPI in skeletal muscle might be associated with muscle function. We analyzed the association between GPI expression level and the grip strength of the all mice group. The mice group's grip strengths were upregulated after 2 weeks of treadmill exercise, and GPI expression level positively correlated with the grip strength. CONCLUSION: These results suggested that the exercise-induced GPI expression in skeletal muscle might have a positive effect on skeletal muscle function.

15.
Am J Physiol Gastrointest Liver Physiol ; 317(2): G147-G160, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30943047

RESUMO

Invasion and metastasis are responsible for the majority of deaths in gastric cancer (GC). microRNA-33a (miR-33a) might function as a tumor suppressor in multiple cancers. Here, we describe the regulation and function of miR-33a in GC and mechanisms involved in epithelial-mesenchymal transition (EMT) and metastasis. First, GC tissues and adjacent normal tissues were collected. miR-33a upregulation or SNAI2 depletion on GC cells were introduced to assess the detailed regulatory mechanism of them. We assessed the expression of miR-33a, SNAI2, Snail/Slug signaling pathway-related genes, and EMT-related markers in GC tissues and cells. miR-33a distribution in GC tissues and adjacent normal tissues was measured. Cell proliferation, migration and invasion, and cell cycle distribution were assessed. In nude mice, GC tumor growth and lymph node metastasis were observed. Furthermore, the predicative value of miR-33a in the prognosis of GC patients was evaluated. The obtained results indicated that lowly expressed miR-33a, highly expressed SNAI2, activated Snail/Slug, and increased EMT were identified in GC tissues. miR-33a was located mainly in the cytoplasm. miR-33a targeted and negatively regulated SNAI2. MKN-45 and MKN-28 cell lines were selected for in vitro experiments. Upregulated miR-33a expression or siRNA-mediated silencing of SNAI2 suppressed the activation of Snail/Slug, whereby GC cell proliferation, invasion and migration, EMT, tumor growth, and lymph node metastasis were inhibited. High expression of miR-33a was a protective factor influencing the prognosis of GC. This study suggests that miR-33a inhibited EMT, invasion, and metastasis of GC through the Snail/Slug signaling pathway by modulating SNAI2 expression.NEW & NOTEWORTHY miR-33a targets and inhibits the expression of SNAI2, overexpression of SNAI2 activates the Snail/Slug signaling pathway, the Snail/Slug signaling pathway promotes GC cell proliferation, invasion, and metastasis, and overexpression of miR-33a inhibits cell proliferation, invasion, and metastasis. This study provides a new therapeutic target for the treatment of GC.


Assuntos
MicroRNAs/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Neoplasias Gástricas , Animais , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Invasividade Neoplásica , Metástase Neoplásica , Transdução de Sinais , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
16.
Cancer Cell Int ; 19: 360, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31892859

RESUMO

BACKGROUND: Increasing studies have suggested that aberrant expression of microRNAs might play essential roles in the progression of cancers. In this study, we sought to construct a high-specific and superior microRNAs signature to improve the survival prediction of colon adenocarcinoma (COAD) patients. METHODS: The genome-wide miRNAs, mRNA and lncRNA expression profiles and corresponding clinical information of COAD were collected from the TCGA database. Differential expression analysis, Kaplan-Meier curve and time-dependent ROC curve were calculated and performed using R software and GraphPad Prism7. Univariate and multivariate Cox analysis was performed to evaluate the prognostic ability of signature. Functional enrichment analysis was analyzed using STRING database. RESULTS: We identified ten prognosis-related microRNAs, including seven risky factors (hsa-miR-197, hsa-miR-32, hsa-miR-887, hsa-miR-3199-2, hsa-miR-4999, hsa-miR-561, hsa-miR-210) and three protective factors (hsa-miR-3917, hsa-miR-3189, hsa-miR-6854). The Kaplan-Meier survival analysis showed that the patients with high risk score had shorter overall survival (OS) in test series. And the similar results were observed in both validation and entire series. The time-dependent ROC curve suggested this signature have high accuracy of OS for COAD. The Multivariate Cox regression analysis and stratification analysis suggested that the ten-microRNA signature was an independent factor after being adjusted with other clinical characteristics. In addition, we also found microRNA signature have higher AUC than other signature. Furthermore, we identified some miRNA-target genes that affect lymphatic metastasis and invasion of COAD patients. CONCLUSION: In this study, we established a ten-microRNA signature as a potentially reliable and independent biomarker for survival prediction of COAD patients.

17.
Tumour Biol ; 37(8): 10499-506, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26850595

RESUMO

Ovarian cancer is commonly treated with cisplatin and paclitaxel combination chemotherapy; however, ovarian cancer cells often develop resistance to these drugs. Increasingly, microRNAs (miRNAs) including miR-873 have been implicated in drug resistance in many cancers, but the role of miR-873 in ovarian cancer remains unknown. MTT cell viability assays revealed that the sensitivities of ovarian cancer lines to cisplatin and paclitaxel increased following transfection with miR-873 (P < 0.05). After predicting the miR-873 binding region in the 3'-untranslated region of ABCB1, dual-luciferase reporter assay confirmed this prediction. RT-PCR and Western blotting revealed that MDR1 expression was significantly downregulated after transfection with miR-873 and upregulated after transfection with anti-miR-873 at both mRNA and protein levels compared to negative controls (P < 0.05). Experiments in a mouse xenograft model confirmed that intratumoral administration of miR-873 could enhance the efficacy of cisplatin in inhibiting tumor growth in ovarian cancer in vivo (P < 0.05). ABCB1 overexpression reduced sensitivities of ovarian cancer lines OVCAR3 and A2780 to cisplatin and paclitaxel, which can be reversed by miR-873 mimic transfection (P < 0.05). In summary, we demonstrated that overexpression of miR-873 increased the sensitivity of ovarian cancer cells to cisplatin and paclitaxel by targeting MDR1 expression. Our findings suggest that combination therapies with chemotherapy agents and miR-873 may suppress drug resistance in ovarian cancer.


Assuntos
Cistadenocarcinoma/metabolismo , MicroRNAs/genética , Proteínas de Neoplasias/fisiologia , Neoplasias Ovarianas/metabolismo , RNA Neoplásico/genética , Regiões 3' não Traduzidas/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/biossíntese , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/fisiologia , Animais , Antineoplásicos Alquilantes/uso terapêutico , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Cisplatino/farmacocinética , Cisplatino/uso terapêutico , Cistadenocarcinoma/tratamento farmacológico , Cistadenocarcinoma/genética , Cistadenocarcinoma/patologia , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , MicroRNAs/antagonistas & inibidores , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Paclitaxel/farmacocinética , Paclitaxel/farmacologia , RNA Antissenso/genética , RNA Mensageiro/biossíntese , RNA Neoplásico/antagonistas & inibidores , RNA Neoplásico/biossíntese , Distribuição Aleatória , Transfecção
18.
Oncotarget ; 6(25): 21704-17, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26023734

RESUMO

In human breast cancer, estrogen receptor-α (ERα) suppresses epithelial-mesenchymal transition (EMT) and stemness, two crucial parameters for tumor metastasis; however, the underlying mechanism by which ERα regulates these two processes remains largely unknown. Bmi1, the polycomb group protein B lymphoma Mo-MLV insertion region 1 homolog, regulates EMT transition, maintains the self-renewal capacity of stem cells, and is frequently overexpressed in human cancers. In the present study, ERα upregulated the expression of the epithelial marker, E-cadherin, in breast cancer cells through the transcriptional down-regulation of Bmi1. Furthermore, ERα overexpression suppressed the migration, invasion, and EMT of breast cancer cells. Notably, overexpression of ERα significantly decreased the CD44high/CD24low cell population and inhibited the capacity for mammosphere formation in ERα-negative breast cancer cells. In addition, overexpression of Bmi1 attenuated the ERα-mediated suppression of EMT and cell stemness. Immunohistochemistry revealed an inverse association of ERα and Bmi1 expression in human breast cancer tissue. Taken together, our findings suggest that ERα inhibits EMT and stemness through the downregulation of Bmi1.


Assuntos
Neoplasias da Mama/metabolismo , Transição Epitelial-Mesenquimal , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica , Complexo Repressor Polycomb 1/metabolismo , Animais , Antígeno CD24/metabolismo , Caderinas/metabolismo , Movimento Celular , Estrogênios/metabolismo , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Metástase Neoplásica , Complexo Repressor Polycomb 1/antagonistas & inibidores , Regiões Promotoras Genéticas , Ligação Proteica , Transdução de Sinais , Células-Tronco/citologia , Cicatrização
19.
Mol Med Rep ; 11(5): 3814-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25529111

RESUMO

Endothelial progenitor cells (EPCs) have an essential role in counteracting risk factor­induced endothelial injury and protecting against the development of vascular injury, such as myocardial infarction. Magnetic resonance imaging (MRI) was reported to be effective in tracking transplanted stem cells following cell­labeling with superparamagnetic iron oxide (SPIO) nanoparticles. SPIO has previously been used to label and track EPCs; however, the safest concentration of SPIO for labeling EPCs on a cellular level has remained to be elucidated. In addition, the optimum number of SPIO­labeled cells required to produce the highest quality magnetic resonance images has not yet been determined. In the present study, EPCs were isolated from the bone marrow of minipigs using density gradient centrifugation. Their biological activity was then studied using flow cytometric analysis. Cells were incubated at different concentrations of SPIO for different durations and then the growth curve, apoptosis, morphology and labeling efficiency of the EPCs were detected using optical and electron microscopy. T2­weighted fast spin­echo (T2WITSE) MRI of the different numbers of SPIO­labeled EPCs (35 µg/ml) were then obtained in axial and sagittal planes. The results of the present study demonstrated that EPCs were efficiently labeled with SPIO, with a labeling efficiency in each group of ~100% following incubation for 24 h. SPIO was found to be localized in the endosomal vesicles of EPCs, which was confirmed by electron microscopy. When the concentration of SPIO was <70 µg/ml, no significant differences were observed in cell viability, proliferative capability (P>0.05) and morphology between labeled and unlabeled EPCs. Furthermore, the T2WITSE signal intensity was significantly decreased in the groups of 5.0x105/ml and 1.0x105/ml compared with that of the control (P<0.05). In conclusion, the results of the present study indicated that 35 µg/ml was the most effective concentration of SPIO to label EPCs in vitro and acquire a high quality MRI. These findings may therefore contribute to the development of a promising novel therapeutic method for the treatment of myocardial infarction following autograft with SPIO­labeled EPCs in vivo.


Assuntos
Rastreamento de Células/métodos , Células Progenitoras Endoteliais/metabolismo , Compostos Férricos , Nanopartículas de Magnetita , Animais , Biomarcadores , Proliferação de Células , Sobrevivência Celular , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/ultraestrutura , Imunofenotipagem , Técnicas In Vitro , Imageamento por Ressonância Magnética/métodos , Suínos , Porco Miniatura
20.
Int J Clin Exp Med ; 8(10): 19725-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26770637

RESUMO

OBJECTIVE: We investigated the effect of umbilical cord blood dendritic cells (DCs) on in vitro proliferation, immunophenotypes and levels of homologous cytokine-induced killer cells (CIK) and the toxicity on leukemia cells. METHOD: Mononuclear cell-induced DC-CIK cells derived from umbilical cord blood were collected and co-cultured in the proportion of 1:5. Cord blood CIK cells or peripheral blood DC-CIK cells were used as control. Phenotypes were analyzed by flow cytometry; vial cell counting was performed using trypan blue, and the killing activity of effector cells against leukemia cells was measured by MTT assay. The levels of interferon-r (IFN-r), tumor necrosis factor-a (TNF-α) and interleukin-12 (IL-12) were determined by ELISA. RESULTS: The proliferative capacity of DC-CIK cells was obviously improved compared with cord blood CIK cells and peripheral blood DC-CIK cells (P<0.05, P<0.05). During the co-culture of cord blood DC-CIK cells, the ratios of CD 3 (+) CD 8 (+) and CD 3 (+) CD 56 (+) cells were obviously higher than that of CIK cells under the same conditions (P<0.05). On day 3 of co-culture, the levels of IL-12, IFN-r and TNF-a in cultured supernatant of cord blood DC-CIK cells were all higher than those secreted by CIK cells cultured alone (P<0.01, P<0.05, P<0.05). When the effector to target ratio was 2.5-20:1, the killing effect of cord blood DC-CIK cells against each subtype of acute leukemia cells was obviously higher than that of CIK cells (P<0.05). No significant differences in killing effect were observed for different subtypes. This finding was consistent with the killing effect of peripheral blood DC-CIK cells against leukemia cells. CONCLUSION: Cord blood DCs can enhance the proliferative capacity of homologous CIK cells and its anti-leukemia effect. Though cord blood DC-CIK cells showed a higher proliferative capacity than peripheral blood DC-CIK cells, the two types of DC-CIK cells did not differ significantly in terms of cytoxicity. With a high availability and the low probability of graft rejection reaction, cord blood DC-CIK cells have a brighter prospect for application in immunotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA