Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7733, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565963

RESUMO

B-Myb has received considerable attention for its critical tumorigenic function of supporting DNA repair. However, its modulatory effects on chemotherapy and immunotherapy have rarely been reported in colorectal cancer. Bortezomib (BTZ) is a novel compound with chemotherapeutic and immunotherapeutic effects, but it fails to work in colorectal cancer with high B-Myb expression. The present study was designed to investigate whether B-Myb deletion in colorectal cancer could potentiate the immune efficacy of BTZ against colorectal cancer and to clarify the underlying mechanism. Stable B-Myb knockdown was induced in colorectal cancer cells, which increased apoptosis of the cancer cells relative to the control group in vitro and in vivo. We found that BTZ exhibited more favourable efficacy in B-Myb-defective colorectal cancer cells and tumor-bearing mice. BTZ treatment led to differential expression of genes enriched in the p53 signaling pathway promoted more powerful downstream DNA damage, and arrested cell cycle in B-Myb-defective colorectal cancer. In contrast, recovery of B-Myb in B-Myb-defective colorectal cancer cells abated BTZ-related DNA damage, cell cycle arrest, and anticancer efficacy. Moreover, BTZ promoted DNA damage-associated enhancement of immunogenicity, as indicated by potentiated expression of HMGB1 and HSP90 in B-Myb-defective cells, thereby driving M1 polarization of macrophages. Collectively, B-Myb deletion in colorectal cancer facilitates the immunogenic death of cancer cells, thereby further promoting the immune efficacy of BTZ by amplifying DNA damage. The present work provides an effective molecular target for colorectal cancer immunotherapy with BTZ.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Animais , Camundongos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Morte Celular Imunogênica , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Apoptose
2.
Photodiagnosis Photodyn Ther ; 42: 103558, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37030434

RESUMO

OBJECTIVE: Photodynamic therapy (PDT) may be an effective therapeutic strategy for colorectal cancer at an early stage. However, malignant cells' resistance to photodynamic agents can lead to treatment failure. MYBL2 (B-Myb) is an oncogene in colorectal carcinogenesis and development, for which little research has focused on its effect on drug resistance. MATERIALS AND METHODS: In the present work, a colorectal cancer cell line with a stable knockdown of MYBL2 (ShB-Myb) was constructed first. Chlorin e6 (Ce6) was utilized to induced PDT. The anti-cancer efficacy was measured by CCK-8, PI staining, and Western blots. The drug uptake of Ce6 was assayed by flow cytometry and confocal microscopy. The ROS generation was detected by the CellROX probe. DDSB and DNA damage were assayed through comet experiment and Western blots. The over-expression of MYBL2 was conducted by MYBL2 plasmid. RESULTS: The findings indicated that the viability of ShB-Myb treated with Ce6-PDT was not decreased compared to control SW480 cells (ShNC), which were resistant to PDT. Further investigation revealed reduced photosensitizer enrichment and mitigated oxidative DNA damage in colorectal cancer cells with depressed MYBL2. It turned out that SW480 cells knocking down MYBL2 showed phosphorylation of NF-κB and led to up-regulation of ABCG2 expression thereupon. When MYBL2 was replenished back in MYBL2-deficient colorectal cancer cells, phosphorylation of NF-κB was blocked and ABCG2 expression up-regulation was suppressed. Additionally, replenishment of MYBL2 also increased the enrichment of Ce6 and the efficacy of PDT. CONCLUSION: In summary, MYBL2 absence in colorectal cancer contributes to drug resistance by activating NF-κB to up-regulate ABCG2 and thereby leading to photosensitizer Ce6 efflux. This study provides a novel theoretical basis and strategy for how to effectively improve the anti-tumor efficacy of PDT.


Assuntos
Clorofilídeos , Neoplasias Colorretais , Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fotoquimioterapia/métodos , Regulação para Cima , NF-kappa B/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Porfirinas/farmacologia , Linhagem Celular Tumoral , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Neoplasias , Transativadores/metabolismo , Proteínas de Ciclo Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA