Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Cell Int ; 23(1): 77, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072829

RESUMO

BACKGROUND: Metastatic disease is the major cause of cancer-related deaths. Increasing evidence shows that primary tumor cells can promote metastasis by preparing the local microenvironment of distant organs, inducing the formation of the so-called "pre-metastatic niche". In recent years, several studies have highlighted that among the tumor-derived molecular components active in pre-metastatic niche formation, small extracellular vesicles (sEVs) play a crucial role. Regarding liver metastasis, the ability of tumor-derived sEVs to affect the activities of non-parenchymal cells such as Kupffer cells and hepatic stellate cells is well described, while the effects on hepatocytes, the most conspicuous and functionally relevant hepatic cellular component, remain unknown. METHODS: sEVs isolated from SW480 and SW620 CRC cells and from clinical samples of CRC patients and healthy subjects were used to treat human healthy hepatocytes (THLE-2 cells). RT-qPCR, Western blot and confocal microscopy were applied to investigate the effects of this treatment. RESULTS: Our study shows for the first time that TGFß1-carrying CRC_sEVs impair the morphological and functional properties of healthy human hepatocytes by triggering their TGFß1/SMAD-dependent EMT. These abilities of CRC_sEVs were further confirmed by evaluating the effects elicited on hepatocytes by sEVs isolated from plasma and biopsies from CRC patients. CONCLUSIONS: Since it is known that EMT of hepatocytes leads to the formation of a fibrotic environment, a well-known driver of metastasis, these results suggest that CRC_sEV-educated hepatocytes could have an active and until now neglected role during liver metastasis formation.

2.
Int J Mol Sci ; 25(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38203716

RESUMO

In the last years, the field of nanomedicine and drug delivery has grown exponentially, providing new platforms to carry therapeutic agents into the target sites. Extracellular vesicles (EVs) are ready-to-use, biocompatible, and non-toxic nanoparticles that are revolutionizing the field of drug delivery. EVs are involved in cell-cell communication and mediate many physiological and pathological processes by transferring their bioactive cargo to target cells. Recently, nanovesicles from plants (PDNVs) are raising the interest of the scientific community due to their high yield and biocompatibility. This study aims to evaluate whether PDNVs may be used as drug delivery systems. We isolated and characterized nanovesicles from tangerine juice (TNVs) that were comparable to mammalian EVs in size and morphology. TNVs carry the traditional EV marker HSP70 and, as demonstrated by metabolomic analysis, contain flavonoids, organic acids, and limonoids. TNVs were loaded with DDHD1-siRNA through electroporation, obtaining a loading efficiency of 13%. We found that the DDHD1-siRNA complex TNVs were able to deliver DDHD1-siRNA to human colorectal cancer cells, inhibiting the target expression by about 60%. This study represents a proof of concept for the use of PDNVs as vehicles of RNA interference (RNAi) toward mammalian cells.


Assuntos
Citrus , Neoplasias Colorretais , Humanos , Animais , RNA Interferente Pequeno/genética , Estudo de Prova de Conceito , Linhagem Celular , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Mamíferos
3.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34829995

RESUMO

Tumor-associated macrophages play a key role in promoting tumor progression by exerting an immunosuppressive phenotype associated with the expression of programmed cell death ligand 1 (PD-L1). It is well known that tumor-derived small extracellular vesicles (SEVs) affect the tumor microenvironment, influencing TAM behavior. The present study aimed to examine the effect of SEVs derived from colon cancer and multiple myeloma cells on macrophage functions. Non-polarized macrophages (M0) differentiated from THP-1 cells were co-cultured with SEVs derived from a colorectal cancer (CRC) cell line, SW480, and a multiple myeloma (MM) cell line, MM1.S. The expression of PD-L1, interleukin-6 (IL-6), and other inflammatory cytokines as well as of the underlying molecular mechanisms were evaluated. Our results indicate that SEVs can significantly upregulate the expressions of PD-L1 and IL-6 at both the mRNA and protein levels and can activate the STAT3 signaling pathway. Furthermore, we identified the TLR4/NF-kB pathway as a convergent mechanism for SEV-mediated PD-L1 expression. Overall, these preliminary data suggest that SEVs contribute to the formation of an immunosuppressive microenvironment.


Assuntos
Antígeno B7-H1/genética , Neoplasias do Colo/genética , Interleucina-6/genética , Fator de Transcrição STAT3/genética , Receptor 4 Toll-Like/genética , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Vesículas Extracelulares/genética , Vesículas Extracelulares/imunologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Transdução de Sinais/genética , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/patologia
4.
Sci Rep ; 7(1): 4711, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28680152

RESUMO

The goal of this study was to understand if exosomes derived from high-metastatic cells may influence the behavior of less aggressive cancer cells and the properties of the endothelium. We found that metastatic colon cancer cells are able to transfer their amoeboid phenotype to isogenic primary cancer cells through exosomes, and that this morphological transition is associated with the acquisition of a more aggressive behavior. Moreover, exosomes from the metastatic line (SW620Exos) exhibited higher ability to cause endothelial hyperpermeability than exosomes from the non metastatic line (SW480Exos). SWATH-based quantitative proteomic analysis highlighted that SW620Exos are significantly enriched in cytoskeletal-associated proteins including proteins activating the RhoA/ROCK pathway, known to induce amoeboid properties and destabilization of endothelial junctions. In particular, thrombin was identified as a key mediator of the effects induced by SW620Exos in target cells, in which we also found a significant increase of RhoA activity. Overall, our results demonstrate that in a heterogeneous context exosomes released by aggressive sub-clones can contribute to accelerate tumor progression by spreading malignant properties that affect both the tumor cell plasticity and the endothelial cell behavior.


Assuntos
Neoplasias do Colo/metabolismo , Neoplasias do Colo/secundário , Endotélio/metabolismo , Exossomos/metabolismo , Linhagem Celular Tumoral , Plasticidade Celular , Neoplasias do Colo/patologia , Endotélio/patologia , Exossomos/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Permeabilidade , Fenótipo , Proteômica , Transdução de Sinais , Trombina/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
5.
Sci Rep ; 7(1): 3170, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28600504

RESUMO

Non-small cell lung cancer (NSCLC) remains the leading cause of cancer-related deaths worldwide. The majority of patients are diagnosed in advanced disease stage. Bone metastasis is the most frequent complication in NSCLC resulting in osteolytic lesions. The perfect balance between bone-resorbing osteoclasts and bone-forming osteoblasts activity is lost in bone metastasis, inducing osteoclastogenesis. In NSCLC, the epidermal growth factor receptor (EGFR) pathway is constitutively activated. EGFR binds Amphiregulin (AREG) that is overexpressed in several cancers such as colon, breast and lung. Its levels in plasma of NSCLC patients correlate with poor prognosis and AREG was recently found as a signaling molecule in exosomes derived from cancer cell lines. Exosomes have a key role in the cell-cell communication and they were recently indicated as important actors in metastatic niche preparation. In the present work, we hypothesize a role of AREG carried by exosomes derived from NSCLC in bone metastasis induction. We observed that NSCLC-exosomes, containing AREG, induce EGFR pathway activation in pre-osteoclasts that in turn causes an increased expression of RANKL. RANKL is able to induce the expression of proteolytic enzymes, well-known markers of osteoclastogenesis, triggering a vicious cycle in osteolytic bone metastasis.


Assuntos
Anfirregulina/genética , Neoplasias Ósseas/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Osteoclastos/metabolismo , Anfirregulina/metabolismo , Animais , Transporte Biológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Técnicas de Cocultura , Receptores ErbB/genética , Receptores ErbB/metabolismo , Exossomos/química , Exossomos/patologia , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Osteoclastos/patologia , Cultura Primária de Células , Ligante RANK/genética , Ligante RANK/metabolismo , Células RAW 264.7 , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
6.
Oncotarget ; 6(23): 19514-27, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26098775

RESUMO

Nanosized vesicles are considered key players in cell to cell communication, thus influencing physiological and pathological processes, including cancer. Nanovesicles have also been found in edible-plants and have shown therapeutic activity in inflammatory bowel diseases; however information on their role in affecting cancer progression is missing.Our study identify for the first time a fraction of vesicles from lemon juice (Citrus limon L.), obtained as a result of different ultracentrifugation, with density ranging from 1,15 to 1,19 g/ml and specific proteomic profile. By using an in vitro approach, we show that isolated nanovesicles inhibit cancer cell proliferation in different tumor cell lines, by activating a TRAIL-mediated apoptotic cell death. Furthermore, we demonstrate that lemon nanovesicles suppress CML tumor growth in vivo by specifically reaching tumor site and by activating TRAIL-mediated apoptotic cell processes. Overall, this study suggests the possible use of plant-edible nanovesicles as a feasible approach in cancer treatment.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citrus , Exossomos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Nanopartículas , Extratos Vegetais/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Carga Tumoral/efeitos dos fármacos , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citrus/química , Exossomos/química , Exossomos/metabolismo , Sucos de Frutas e Vegetais , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Fitoterapia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , Proteínas de Plantas/análise , Plantas Medicinais , Proteômica/métodos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Virchows Arch ; 449(1): 48-61, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16612624

RESUMO

To better understand the relationship between tumor heterogeneity, differentiation, and metastasis, suitable experimental models permitting in vitro and in vivo studies are necessary. A new variant cell line (T84SF) exhibiting an altered phenotype was recently selected from a colon cancer cell line (T84) by repetitive plating on TNF-alpha treated human endothelial cells and subsequent selection for adherent cells. The matched pair of cell lines provides a useful system to investigate the extravasation step of the metastatic cascade. Since analysis of morphological differences can be instructive to the understanding of metastatic potential of tumor cells, we compared the ultrastructural and functional phenotype of T84 and T84SF cells in vitro and in vivo. The reported ultrastructural features evidence differences between the two cell lines; selected cells showed a marked pleomorphism of cell size and nuclei, shape, and greater surface complexity. These morphological differences were also coupled with biochemical data showing a distinct tyrosine phosphorylation-based signaling, an altered localization of beta-catenin, MAPK, and AKT activation, as well as an increased expression in T84SF cells of Bcl-X(L), a major regulator of apoptosis. Therefore, these cell lines represent a step forward in the development of appropriate models in vitro and in vivo to investigate colon cancer progression.


Assuntos
Adenocarcinoma/patologia , Linhagem Celular Tumoral/patologia , Neoplasias do Colo/patologia , Metástase Neoplásica/patologia , Adenocarcinoma/metabolismo , Apoptose , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral/metabolismo , Núcleo Celular/ultraestrutura , Neoplasias do Colo/metabolismo , Vesículas Citoplasmáticas/enzimologia , Vesículas Citoplasmáticas/ultraestrutura , Progressão da Doença , Gelatinases/metabolismo , Humanos , Microscopia Eletrônica de Transmissão , Fenótipo , Transdução de Sinais , Proteína bcl-X/metabolismo
8.
Micron ; 36(5): 477-81, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15935306

RESUMO

Renewal of cell population is needed in the tunic of ascidians, as the tunic cells are involved in many biological functions. Tunic cells are thought to arrive by migrating across the mantle epithelium into the tunic from the blood lacunae or the mesenchymal space. Electron microscope observations show that the mantle epithelium of Ciona intestinalis shares some proliferative characteristics, releasing cells into the tunic and thus providing an increase renewal of tunical cells in restricted zones of adult animals.


Assuntos
Ciona intestinalis/citologia , Células Epiteliais/citologia , Animais , Divisão Celular , Ciona intestinalis/ultraestrutura , Células Epiteliais/ultraestrutura , Epitélio/ultraestrutura , Microscopia Eletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA