Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 42(24): e113590, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38073509

RESUMO

Cells secrete extracellular vesicles (EVs) and non-vesicular extracellular (nano)particles (NVEPs or ENPs) that may play a role in intercellular communication. Tumor-derived EVs have been proposed to induce immune priming of antigen presenting cells or to be immuno-suppressive agents. We suspect that such disparate functions are due to variable compositions in EV subtypes and ENPs. We aimed to characterize the array of secreted EVs and ENPs of murine tumor cell lines. Unexpectedly, we identified virus-like particles (VLPs) from endogenous murine leukemia virus in preparations of EVs produced by many tumor cells. We established a protocol to separate small EVs from VLPs and ENPs. We compared their protein composition and analyzed their functional interaction with target dendritic cells. ENPs were poorly captured and did not affect dendritic cells. Small EVs specifically induced dendritic cell death. A mixed large/dense EV/VLP preparation was most efficient to induce dendritic cell maturation and antigen presentation. Our results call for systematic re-evaluation of the respective proportions and functions of non-viral EVs and VLPs produced by murine tumors and their contribution to tumor progression.


Assuntos
Retrovirus Endógenos , Vesículas Extracelulares , Neoplasias , Animais , Camundongos , Vesículas Extracelulares/metabolismo , Linhagem Celular Tumoral , Diferenciação Celular , Células Dendríticas , Neoplasias/metabolismo
2.
J Cell Biol ; 221(11)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36169638

RESUMO

Intracellular trafficking is mediated by transport carriers that originate by membrane remodeling from donor organelles. Tubular carriers contribute to the flux of membrane lipids and proteins to acceptor organelles, but how lipids and proteins impose a tubular geometry on the carriers is incompletely understood. Using imaging approaches on cells and in vitro membrane systems, we show that phosphatidylinositol-4-phosphate (PI4P) and biogenesis of lysosome-related organelles complex 1 (BLOC-1) govern the formation, stability, and functions of recycling endosomal tubules. In vitro, BLOC-1 binds and tubulates negatively charged membranes, including those containing PI4P. In cells, endosomal PI4P production by type II PI4-kinases is needed to form and stabilize BLOC-1-dependent recycling endosomal tubules. Decreased PI4KIIs expression impairs the recycling of endosomal cargoes and the life cycles of intracellular pathogens such as Chlamydia bacteria and influenza virus that exploit the membrane dynamics of recycling endosomes. This study demonstrates how a phospholipid and a protein complex coordinate the remodeling of cellular membranes into functional tubules.


Assuntos
Endossomos , Membranas Intracelulares , Peptídeos e Proteínas de Sinalização Intracelular , Fosfatos de Fosfatidilinositol , Membrana Celular/metabolismo , Endossomos/metabolismo , Membranas Intracelulares/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisossomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Transporte Proteico
3.
Methods Mol Biol ; 2507: 1-18, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35773574

RESUMO

Transmembrane proteins (or integral membrane proteins) are synthesized in the endoplasmic reticulum where most of them are core glycosylated prior to folding and in some cases assembly into quaternary structures. Correctly glycosylated, folded, and assembled transmembrane proteins are then shuttled to the Golgi apparatus for additional posttranslational modifications such as complex-type glycosylations, sulfation or proteolytic clipping. At the plasma membrane, the glycosylated extracellular domains are key to communicate with the cellular environment for a variety of functions, such as binding to the extracellular matrix for cell adhesion and migration, to neighboring cells for cell-cell interaction, or to extracellular components for nutrient uptake and cell signaling. Intracellular domains are essential to mediate signaling cascades, or to connect to cytosolic adaptors for internalization and intracellular compartmentalization. Despite its importance for the understanding of molecular mechanisms of transmembrane protein function, the determination of their structures has remained a challenging task. In recent years, their reconstitution in lipid nanodiscs in combination with high resolution cryo-electron microscopy has provided novel avenues to render this process more accessible. Here, we describe detailed protocols for the solubilization of heavily glycosylated α5ß1 integrin from rat livers, its purification and reconstitution into nanodiscs. At the plasma membrane of many cells, including tumor metastases, this essential heterodimeric transmembrane protein mediates the communication between extracellular matrix and cytosolic cytoskeleton in processes of cell adhesion and migration. We expect that the protocols that are described here will provide new opportunities for the determination of the full structure of α5ß1 integrin, as well as for the understanding of how interacting partners can regulate function and activity of this transmembrane protein.


Assuntos
Comunicação Celular , Integrinas , Animais , Adesão Celular/fisiologia , Comunicação Celular/fisiologia , Microscopia Crioeletrônica , Fígado , Ratos
4.
Biomacromolecules ; 15(6): 2206-17, 2014 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-24801808

RESUMO

We developed a new robust reduction-responsive polymersome based on the amphiphilic block copolymer PEG-SS-PAChol. The stability and robustness were achieved by the smectic physical cross-linking of cholesterol-containing liquid crystal polymer PAChol in the hydrophobic layer. The reduction-sensitivity was introduced by the disulfide bridge (-S-S-) that links the hydrophilic PEG block and the hydrophobic PAChol block. We used a versatile synthetic strategy based on atom transfer radical polymerization (ATRP) to synthesize the reduction-responsive amphiphilic block copolymers. The reductive cleavage of the disulfide bridge in the block copolymers was first evidenced in organic solution. The partial destruction of PEG-SS-PAChol polymersomes in the presence of a reducing agent was then demonstrated by cryo-electron microscopy. Finally, the calcein release from PEG-SS-PAChol polymersomes triggered by glutathione (GSH) was observed both in PBS suspension and in vitro inside the macrophage cells. High GSH concentrations (≥35 mM in PBS or artificially enhanced in macrophage cells by GSH-OEt pretreatment) and long incubation time (in the order of hours) were, however, necessary to get significant calcein release. These polymersomes could be used as drug carriers with very long circulation profiles and slow release kinetics.


Assuntos
Colesterol/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Polietilenoglicóis/química , Succinimidas/química , Animais , Linhagem Celular , Colesterol/administração & dosagem , Portadores de Fármacos/administração & dosagem , Macrófagos/efeitos dos fármacos , Camundongos , Polietilenoglicóis/administração & dosagem , Succinimidas/administração & dosagem
5.
Langmuir ; 29(5): 1356-69, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23293844

RESUMO

Thermoresponsive behavior of different kinds of polymersomes was studied using small angle neutron scattering (SANS), transmission electron microscopy (TEM), and proton nuclear magnetic resonance ((1)H NMR). The polymersomes were made of block copolymers containing a 2000 Da polyethylene glycol (PEG) as a hydrophilic block and either a liquidlike polymer (e.g., PBA: polybutylacrylate), a solidlike polymer (PS: polystyrene), or a liquid crystalline (LC) polymer as a hydrophobic block. Structural changes in polymersomes are driven in all cases by the critical dehydration temperature of PEG corona, which is closely related to the chemical structure and chain mobility of the hydrophobic block. No structural changes occur upon heating from 25 to 75 °C in the liquidlike polymersomes where the critical dehydration temperature of PEG should be higher than 75 °C. In contrast, glassy PEG-b-PS polymersomes and LC polymersomes show structural changes around 55 °C, which corresponds to the critical dehydration temperature of PEG in those block copolymers. Furthermore, the structural changes depend on the properties of the hydrophobic layer. Glassy PEG-b-PS polymersomes aggregate together above 55 °C, but the bilayer membrane is robust enough to remain intact. This aggregation is reversible, and rather separate polymersomes are recovered upon cooling. However, LC polymersomes display drastic and irreversible structural changes when heated above ∼55 °C. These changes are dependent on the LC structures of the hydrophobic layer. Nematic LC polymersomes turn into thick-walled capsules, whereas smectic LC polymersomes collapse into dense aggregates. As these drastic and irreversible changes decrease or remove the inner compartment volume of the vesicle, LC polymersomes can be used for thermal-responsive controlled release, as shown by a study of calcein release. Finally, toxicity studies proved that LC polymersomes were noncytotoxic and had no effect on cell morphology.


Assuntos
Acrilatos/química , Polietilenoglicóis/química , Poliestirenos/química , Temperatura , Linhagem Celular Tumoral , Humanos , Estrutura Molecular
6.
J Colloid Interface Sci ; 357(1): 75-81, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21334635

RESUMO

We have investigated the most efficient way of preparing biocompatible gold nanorods (GNR) used as tool for cancer imaging and therapy. The surface of cetyltrimethylammonium bromide-stabilized gold nanorods (GNR-CTAB) was functionalized with various thio-polyethylene glycols of the general formula HS-PEGmX (m=356-10,000; X=-OMe, -NH(2)). The influence of several parameters such as PEG chain length, reaction conditions and purification method on long-term stability, morphology and optical properties of the produced GNR-S-PEGmX was studied, demonstrating the existence of a threshold HS-PEGmX chain length (with molecular weight m≥2000) for efficient steric stabilization of GNR. Several purification techniques were compared: dialysis, centrifugation and a rarely used technique in this field, size exclusion chromatography. While a very weak efficiency of dialysis was evidenced, both centrifugation and size exclusion chromatography were found to provide pure GNRs, though the latter method yielded nanoparticles with a significantly higher stability. Finally, the long-term stability of the produced GNRs was investigated in various media: water, PBS buffer and serum.


Assuntos
Diagnóstico por Imagem/métodos , Ouro/química , Nanotubos/química , Neoplasias/patologia , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/isolamento & purificação , Estabilidade de Medicamentos , Polietilenoglicóis/química
7.
Biochim Biophys Acta ; 1798(11): 2094-101, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20691149

RESUMO

ABCG2 is a human membrane ATP-binding cassette half-transporter that hydrolyzes ATP to efflux a large number of chemotherapeutic agents. Several oligomeric states of ABCG2 from homodimers to dodecamers have been reported depending on the overexpression systems and/or the protocols used for purification. Here, we compared the oligomeric state of His(6)-ABCG2 expressed in Sf9 insect cells and in human Flp-In-293/ABCG2 cells after solubilization in mild detergents. His(6)-ABCG2 was purified through a new approach involving its specific recognition onto a functionalized lipid layer containing a Ni-NTA lipid. This approach allowed the purification of His-ABCG2 in presence of all solubilized membrane components that might be involved in the stabilisation of native oligomers and without requiring any additional washing or concentration passages. ABCG2 purified onto the NiNTA lipid surfaces were directly analyzed by electron microscopy and by biochemical assays. Altogether, our data are consistent with a tetrameric organization of ABCG2 when expressed in either heterologous Sf9 insect cells or in human homologous cells.


Assuntos
Transportadores de Cassetes de Ligação de ATP/isolamento & purificação , Membrana Celular/química , Proteínas de Neoplasias/isolamento & purificação , Multimerização Proteica , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/química , Animais , Humanos , Microscopia Eletrônica , Proteínas de Neoplasias/química , Spodoptera
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA