Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Adv Sci (Weinh) ; : e2308255, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757578

RESUMO

Metabolic alterations in cancers can be exploited for diagnostic, prognostic, and therapeutic purposes. This is exemplified by 18F-fluorodeoxyglucose (FDG)-positron emission tomography (FDG-PET), an imaging tool that relies on enhanced glucose uptake by tumors for diagnosis and staging. By performing transcriptomic analysis of breast cancer (BC) samples from patients stratified by FDG-PET, a 54-gene signature (PETsign) is identified that recapitulates FDG uptake. PETsign is independently prognostic of clinical outcome in luminal BCs, the most common and heterogeneous BC molecular subtype, which requires improved stratification criteria to guide therapeutic decision-making. The prognostic power of PETsign is stable across independent BC cohorts and disease stages including the earliest BC stage, arguing that PETsign is an ab initio metabolic signature. Transcriptomic and metabolomic analysis of BC cells reveals that PETsign predicts enhanced glycolytic dependence and reduced reliance on fatty acid oxidation. Moreover, coamplification of PETsign genes occurs frequently in BC arguing for their causal role in pathogenesis. CXCL8 and EGFR signaling pathways feature strongly in PETsign, and their activation in BC cells causes a shift toward a glycolytic phenotype. Thus, PETsign serves as a molecular surrogate for FDG-PET that could inform clinical management strategies for BC patients.

3.
J Cell Biol ; 221(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36200956

RESUMO

Asymmetric cell division is a key tumor suppressor mechanism that prevents the uncontrolled expansion of the stem cell (SC) compartment by generating daughter cells with alternative fates: one retains SC identity and enters quiescence and the other becomes a rapidly proliferating and differentiating progenitor. A critical player in this process is Numb, which partitions asymmetrically at SC mitosis and inflicts different proliferative and differentiative fates in the two daughters. Here, we show that asymmetric Numb partitioning per se is insufficient for the proper control of mammary SC dynamics, with differential phosphorylation and functional inactivation of Numb in the two progeny also required. The asymmetric phosphorylation/inactivation of Numb in the progenitor is mediated by the atypical PKCζ isoform. This mechanism is subverted in breast cancer via aberrant activation of PKCs that phosphorylate Numb in both progenies, leading to symmetric division and expansion of the cancer SC compartment, associated with aggressive disease. Thus, Numb phosphorylation represents a target for breast cancer therapy.


Assuntos
Neoplasias da Mama , Proteínas de Membrana , Células-Tronco Neoplásicas , Proteínas do Tecido Nervoso , Divisão Celular Assimétrica , Neoplasias da Mama/genética , Feminino , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitose , Células-Tronco Neoplásicas/citologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fosforilação
5.
Methods Cell Biol ; 170: 59-79, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811104

RESUMO

MicroRNAs (miRNAs) are an evolutionarily conserved class of small (18-22 nucleotides) noncoding RNAs involved in the regulation of a variety of cellular and developmental processes. MiRNA expression is frequently altered in human cancers compared to normal tissues, potentially contributing to tumorigenesis. Generally, high-throughput profiles of miRNA expression levels are generated using bulk samples, from both normal and cancer tissues. However, cancer tissues are quite heterogeneous and might contain subpopulations critical for tumor development, i.e., cancer stem cells (CSCs) or tumor-initiating cells (TICs) with aberrant stem-like features, such as unlimited self-renewal potential. The isolation of these aberrant subpopulations from solid tumors is a relatively recent achievement, with breast cancer being one of the first solid human cancers in which CSCs have been identified and biologically characterized. Here, we describe a new methodology that can overcome the main challenge in dealing with rare cells such as SCs/CSCs, represented by the paucity of the starting material. Based on previously published protocols, used by both our and other research groups, we used the FACS-sorting approach to isolate mammary normal and cancer stem cells based on the amount of PKH26 fluorescent dye they retained. Depending on the number of SCs/CSCs isolated, we established two different protocols for the reliable and analytically sensitive detection of up to 384 miRNAs using the Taqman Low Density Array (TLDA) platform.


Assuntos
MicroRNAs , Células-Tronco Neoplásicas , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/patologia , Compostos Orgânicos/metabolismo , Coloração e Rotulagem
6.
Eur J Cancer ; 164: 52-61, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35172273

RESUMO

OBJECTIVE: Molecular tests predicting the risk of distant recurrence (DR) can be used to assist therapy decision-making in oestrogen receptor-positive (ER+) and human epidermal growth factor receptor 2-negative (HER2-) breast cancer patients after considerations of standard clinical markers. The Oncotype DX Recurrence Score (RS) is a widespread tool used for this purpose. Here, we compared the RS with the StemPrintER Risk Score (SPRS), a novel genomic predictor with a unique biological basis in its ability to measure the expression of cancer stemness genes. MATERIALS AND METHODS: We benchmarked the SPRS vs. RS, alone or in combination with clinicopathological variables expressed by the Clinical Treatment Score (CTS), for the prognostication of DR in a retrospective cohort of 776 postmenopausal patients with ER+/HER2-breast cancer enrolled in the translational arm of the randomised Arimidex, Tamoxifen, Alone or in Combination (ATAC) trial. Likelihood ratio (LR) with χ2 test and C-index were used to assess prognostic performance for the entire ten-year follow-up period and in early (0-5 years) and late (5-10 years) intervals. RESULTS: In all patients, the SPRS provided significantly more prognostic information than the RS for ten-year DR prognostication (C-index = 0.688, LR-χ2 = 33.4 vs. C-index = 0.641, LR-χ2 = 22.1) and for late (5-10 years) DR prognostication (C-index = 0.689, LR-χ2 = 18.8 vs. C-index = 0.571, LR-χ2 = 4.7). The SPRS also provided more prognostic information than the RS when added to the CTS in all patients (CTS + SPRS: LR-Δχ2 = 14.9; CTS + RS: LR-Δχ2 = 9.7) and in node-negative patients (CTS + SPRS: LR-Δχ2 = 11.7; CTS + RS: LR-Δχ2 = 6.6). CONCLUSIONS: In postmenopausal ER+/HER2- breast cancer patients, SPRS provided more prognostic information than RS for DR when used alone or in combination with the CTS. The SPRS could therefore potentially identify high-risk patients, who might benefit from aggressive treatments, from low-risk patients who might safely avoid adjuvant chemotherapy or prolongation of endocrine therapy.


Assuntos
Neoplasias da Mama , Anastrozol/uso terapêutico , Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Humanos , Recidiva Local de Neoplasia/patologia , Prognóstico , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Estudos Retrospectivos , Tamoxifeno/uso terapêutico
7.
Adv Sci (Weinh) ; 9(9): e2103249, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35098698

RESUMO

Breast cancer is the most prevalent cancer and a major cause of death in women worldwide. Although early diagnosis and therapeutic intervention significantly improve patient survival rate, metastasis still accounts for most deaths. Here it is reported that, in a cohort of more than 2000 patients with breast cancer, overexpression of PI3KC2α occurs in 52% of cases and correlates with high tumor grade as well as increased probability of distant metastatic events, irrespective of the subtype. Mechanistically, it is demonstrated that PI3KC2α synthetizes a pool of PI(3,4)P2 at focal adhesions that lowers their stability and directs breast cancer cell migration, invasion, and metastasis. PI(3,4)P2 locally produced by PI3KC2α at focal adhesions recruits the Ras GTPase activating protein 3 (RASA3), which inactivates R-RAS, leading to increased focal adhesion turnover, migration, and invasion both in vitro and in vivo. Proof-of-concept is eventually provided that inhibiting PI3KC2α or lowering RASA3 activity at focal adhesions significantly reduces the metastatic burden in PI3KC2α-overexpressing breast cancer, thereby suggesting a novel strategy for anti-breast cancer therapy.


Assuntos
Neoplasias da Mama , Adesão Celular/fisiologia , Feminino , Adesões Focais/metabolismo , Adesões Focais/patologia , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Fosfatidilinositóis/metabolismo
8.
Nat Rev Mol Cell Biol ; 22(9): 625-643, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34075221

RESUMO

Endocytosis allows cells to transport particles and molecules across the plasma membrane. In addition, it is involved in the termination of signalling through receptor downmodulation and degradation. This traditional outlook has been substantially modified in recent years by discoveries that endocytosis and subsequent trafficking routes have a profound impact on the positive regulation and propagation of signals, being key for the spatiotemporal regulation of signal transmission in cells. Accordingly, endocytosis and membrane trafficking regulate virtually every aspect of cell physiology and are frequently subverted in pathological conditions. Two key aspects of endocytic control over signalling are coming into focus: context-dependency and long-range effects. First, endocytic-regulated outputs are not stereotyped but heavily dependent on the cell-specific regulation of endocytic networks. Second, endocytic regulation has an impact not only on individual cells but also on the behaviour of cellular collectives. Herein, we will discuss recent advancements in these areas, highlighting how endocytic trafficking impacts complex cell properties, including cell polarity and collective cell migration, and the relevance of these mechanisms to disease, in particular cancer.


Assuntos
Membrana Celular/metabolismo , Endocitose/fisiologia , Endossomos/metabolismo , Animais , Transporte Biológico , Movimento Celular , Polaridade Celular , Humanos , Morfogênese , Transdução de Sinais
9.
Cancer Cell ; 39(5): 708-724.e11, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33798472

RESUMO

Metastasis is facilitated by the formation of a "premetastatic niche," which is fostered by primary tumor-derived factors. Colorectal cancer (CRC) metastasizes mainly to the liver. We show that the premetastatic niche in the liver is induced by bacteria dissemination from primary CRC. We report that tumor-resident bacteria Escherichia coli disrupt the gut vascular barrier (GVB), an anatomical structure controlling bacterial dissemination along the gut-liver axis, depending on the virulence regulator VirF. Upon GVB impairment, bacteria disseminate to the liver, boost the formation of a premetastatic niche, and favor the recruitment of metastatic cells. In training and validation cohorts of CRC patients, we find that the increased levels of PV-1, a marker of impaired GVB, is associated with liver bacteria dissemination and metachronous distant metastases. Thus, PV-1 is a prognostic marker for CRC distant recurrence and vascular impairment, leading to liver metastases.


Assuntos
Neoplasias Colorretais/irrigação sanguínea , Neoplasias Colorretais/patologia , Neoplasias Hepáticas/patologia , Metástase Neoplásica/patologia , Recidiva Local de Neoplasia/patologia , Bactérias/isolamento & purificação , Neoplasias do Colo/irrigação sanguínea , Neoplasias do Colo/patologia , Humanos , Fígado/patologia , Neoplasias Hepáticas/secundário
10.
J Cell Biol ; 220(5)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33819341

RESUMO

Although ectopic overexpression of miRNAs can influence mammary normal and cancer stem cells (SCs/CSCs), their physiological relevance remains uncertain. Here, we show that miR-146 is relevant for SC/CSC activity. MiR-146a/b expression is high in SCs/CSCs from human/mouse primary mammary tissues, correlates with the basal-like breast cancer subtype, which typically has a high CSC content, and specifically distinguishes cells with SC/CSC identity. Loss of miR-146 reduces SC/CSC self-renewal in vitro and compromises patient-derived xenograft tumor growth in vivo, decreasing the number of tumor-initiating cells, thus supporting its pro-oncogenic function. Transcriptional analysis in mammary SC-like cells revealed that miR-146 has pleiotropic effects, reducing adaptive response mechanisms and activating the exit from quiescent state, through a complex network of finely regulated miRNA targets related to quiescence, transcription, and one-carbon pool metabolism. Consistent with these findings, SCs/CSCs display innate resistance to anti-folate chemotherapies either in vitro or in vivo that can be reversed by miR-146 depletion, unmasking a "hidden vulnerability" exploitable for the development of anti-CSC therapies.


Assuntos
Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/genética , Células-Tronco Neoplásicas/metabolismo , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos
11.
Nature ; 585(7826): 597-602, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32612235

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) is a key metabolic hub that controls the cellular response to environmental cues by exerting its kinase activity on multiple substrates1-3. However, whether mTORC1 responds to diverse stimuli by differentially phosphorylating specific substrates is poorly understood. Here we show that transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy4,5, is phosphorylated by mTORC1 via a substrate-specific mechanism that is mediated by Rag GTPases. Owing to this mechanism, the phosphorylation of TFEB-unlike other substrates of mTORC1, such as S6K and 4E-BP1- is strictly dependent on the amino-acid-mediated activation of RagC and RagD GTPases, but is insensitive to RHEB activity induced by growth factors. This mechanism has a crucial role in Birt-Hogg-Dubé syndrome, a disorder that is caused by mutations in the RagC and RagD activator folliculin (FLCN) and is characterized by benign skin tumours, lung and kidney cysts and renal cell carcinoma6,7. We found that constitutive activation of TFEB is the main driver of the kidney abnormalities and mTORC1 hyperactivity in a mouse model of Birt-Hogg-Dubé syndrome. Accordingly, depletion of TFEB in kidneys of these mice fully rescued the disease phenotype and associated lethality, and normalized mTORC1 activity. Our findings identify a mechanism that enables differential phosphorylation of mTORC1 substrates, the dysregulation of which leads to kidney cysts and cancer.


Assuntos
Síndrome de Birt-Hogg-Dubé/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/deficiência , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Síndrome de Birt-Hogg-Dubé/genética , Síndrome de Birt-Hogg-Dubé/patologia , Linhagem Celular , Modelos Animais de Doenças , Ativação Enzimática , Células HeLa , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Camundongos , Camundongos Knockout , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Especificidade por Substrato , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética
12.
Nat Commun ; 11(1): 3020, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32541686

RESUMO

The subversion of endocytic routes leads to malignant transformation and has been implicated in human cancers. However, there is scarce evidence for genetic alterations of endocytic proteins as causative in high incidence human cancers. Here, we report that Epsin 3 (EPN3) is an oncogene with prognostic and therapeutic relevance in breast cancer. Mechanistically, EPN3 drives breast tumorigenesis by increasing E-cadherin endocytosis, followed by the activation of a ß-catenin/TCF4-dependent partial epithelial-to-mesenchymal transition (EMT), followed by the establishment of a TGFß-dependent autocrine loop that sustains EMT. EPN3-induced partial EMT is instrumental for the transition from in situ to invasive breast carcinoma, and, accordingly, high EPN3 levels are detected at the invasive front of human breast cancers and independently predict metastatic rather than loco-regional recurrence. Thus, we uncover an endocytic-based mechanism able to generate TGFß-dependent regulatory loops conferring cellular plasticity and invasive behavior.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Neoplasias da Mama/fisiopatologia , Endocitose , Proteínas Adaptadoras de Transporte Vesicular/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caderinas/genética , Caderinas/metabolismo , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Transdução de Sinais , Fator de Transcrição 4/genética , Fator de Transcrição 4/metabolismo , Fator de Crescimento Transformador beta/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
13.
BMC Cancer ; 19(1): 903, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31500605

RESUMO

BACKGROUND: Prostate cancer (PCa) is the second most common cancer among men. New imaging-modalities have increased the diagnosed patients with limited number of metastasis after primary curative therapy, introducing so-called oligometastatic state. Stereotactic body radiotherapy (SBRT) is emerging as a low-toxicity treatment to erase PCa localizations and postpone androgen deprivation therapy (ADT). A deeper understanding of the predictive role of biomarkers is desirable for a targeted treatment selection and surveillance programs. The aims of the RADIOSA trial are: 1. Compare SBRT +/- ADT for oligorecurrent-castration-sensitive PCa (OCS-PCa) in terms of efficacy, toxicity and Quality of Life (QoL). 2. Develop biology/imaging based prognostic tool that allows identifying OCS-PCa subclasses. METHODS: This is a randomized phase II clinical trial, recruiting 160 OCS-PCa in 3 years, with progression-free survival (PFS) as primary endpoint. Three tasks will be developed: 1. Randomized clinical study (3 years for accrual and 2 years for follow-up and data analysis); 2. Imaging study, including imaging registration and METastasis Reporting and Data System (MET-RADS) criteria; 3. Pre-clinical study, development of a biobank of blood samples for the analysis of neutrophil-to-lymphocyte ratio and preparatory for a subsequent miRNA profiling. We aim to determine which arm is justified for testing in a subsequent Phase III trial. A decision-tree algorithm, based on prognosis, biological phenotype and imaging profile, will be developed. DISCUSSION: Recruiting will start in July 2019. SBRT will allow obtaining excellent PFS, local control, QoL and low toxicity. In SBRT arm, ADT deferral will allow for a drug-holiday, delaying the detrimental impact on QoL. A sufficient number of blood samples will be collected to perform biological patient profiling. A stratification tool will be established with an analysis of morphological and functional imaging, based on the use of MET-RADS criteria. So, in conclusion, RADIOSA aims to define the optimal management of bone/nodal PCa relapses in a SBRT regimen. This study will increase our knowledge on low-burden metastatic PCa in the era of high precision and high technology personalized medicine, offering highly effective therapy in terms of clinical outcome and cost-effectiveness. TRIAL REGISTRATION: The RADIOSA study was prospectively registered at clinicaltrials.gov ( NCT03940235 , May 2019).


Assuntos
Neoplasias da Próstata/radioterapia , Radiocirurgia , Antagonistas de Androgênios/uso terapêutico , Antineoplásicos Hormonais/uso terapêutico , Humanos , Masculino , Prognóstico , Intervalo Livre de Progressão , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/tratamento farmacológico , Resultado do Tratamento
14.
G3 (Bethesda) ; 9(10): 3359-3367, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31451549

RESUMO

MDM2 regulates a variety of cellular processes through its dual protein:protein interaction and ubiquitin ligase activities. One major function of MDM2 is to bind and ubiquitinate P53, thereby regulating its proteasomal degradation. This function is in turn controlled by the cell fate determinant NUMB, which binds to and inhibits MDM2 via a short stretch of 11 amino acids, contained in its phosphotyrosine-binding (PTB) domain, encoded by exon 3 of the NUMB gene. The NUMB-MDM2-P53 circuitry is relevant to the specification of the stem cell fate and its subversion has been shown to be causal in breast cancer leading to the emergence of cancer stem cells. While extensive work on the evolutionary aspects of the MDM2/P53 circuitry has provided hints as to how these two proteins have evolved together to maintain conserved and linked functions, little is known about the evolution of the NUMB gene and, in particular, how it developed the ability to regulate MDM2 function. Here, we show that NUMB is a metazoan gene, which acquired exon 3 in the common ancestor of the Chordate lineage, first being present in the Cephalochordate and Tunicate subphyla, but absent in invertebrates. We provide experimental evidence showing that since its emergence, exon 3 conferred to the PTB domain of NUMB the ability to bind and to regulate MDM2 functions.


Assuntos
Cordados/classificação , Cordados/genética , Éxons , Regulação da Expressão Gênica , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Animais , Evolução Molecular , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Filogenia , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas , Proteínas Proto-Oncogênicas c-mdm2/química , Relação Estrutura-Atividade
15.
Nat Mater ; 18(11): 1252-1263, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31332337

RESUMO

During wound repair, branching morphogenesis and carcinoma dissemination, cellular rearrangements are fostered by a solid-to-liquid transition, known as unjamming. The biomolecular machinery behind unjamming and its pathophysiological relevance remain, however, unclear. Here, we study unjamming in a variety of normal and tumorigenic epithelial two-dimensional (2D) and 3D collectives. Biologically, the increased level of the small GTPase RAB5A sparks unjamming by promoting non-clathrin-dependent internalization of epidermal growth factor receptor that leads to hyperactivation of the kinase ERK1/2 and phosphorylation of the actin nucleator WAVE2. This cascade triggers collective motility effects with striking biophysical consequences. Specifically, unjamming in tumour spheroids is accompanied by persistent and coordinated rotations that progressively remodel the extracellular matrix, while simultaneously fluidizing cells at the periphery. This concurrent action results in collective invasion, supporting the concept that the endo-ERK1/2 pathway is a physicochemical switch to initiate collective invasion and dissemination of otherwise jammed carcinoma.


Assuntos
Diferenciação Celular , Movimento Celular , Linhagem Celular Tumoral , Proliferação de Células , Receptores ErbB/metabolismo , Humanos , Cinética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo
16.
Cell Rep ; 27(10): 3049-3061.e6, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31167147

RESUMO

Adaptor protein 2 (AP2) is a major constituent of clathrin-coated pits (CCPs). Whether it is essential for all forms of clathrin-mediated endocytosis (CME) in mammalian cells is an open issue. Here, we demonstrate, by live TIRF microscopy, the existence of a subclass of relatively short-lived CCPs lacking AP2 under physiological, unperturbed conditions. This subclass is retained in AP2-knockout cells and is able to support the internalization of epidermal growth factor receptor (EGFR) but not of transferrin receptor (TfR). The AP2-independent internalization mechanism relies on the endocytic adaptors eps15, eps15L1, and epsin1. The absence of AP2 impairs the recycling of the EGFR to the cell surface, thereby augmenting its degradation. Accordingly, under conditions of AP2 ablation, we detected dampening of EGFR-dependent AKT signaling and cell migration, arguing that distinct classes of CCPs could provide specialized functions in regulating EGFR recycling and signaling.


Assuntos
Vesículas Revestidas por Clatrina/fisiologia , Transdução de Sinais , Complexo 2 de Proteínas Adaptadoras/antagonistas & inibidores , Complexo 2 de Proteínas Adaptadoras/genética , Complexo 2 de Proteínas Adaptadoras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/antagonistas & inibidores , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Linhagem Celular , Movimento Celular , Endocitose , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Edição de Genes , Células HeLa , Humanos , Camundongos , Microscopia de Fluorescência , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ativação Transcricional
17.
EBioMedicine ; 42: 352-362, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30846393

RESUMO

BACKGROUND: Breast cancers show variations in the number and biological aggressiveness of cancer stem cells that correlate with their clinico-prognostic and molecular heterogeneity. Thus, prognostic stratification of breast cancers based on cancer stem cells might help guide patient management. METHODS: We derived a 20-gene stem cell signature from the transcriptional profile of normal mammary stem cells, capable of identifying breast cancers with a homogeneous profile and poor prognosis in in silico analyses. The clinical value of this signature was assessed in a prospective-retrospective cohort of 2, 453 breast cancer patients. Models for predicting individual risk of metastasis were developed from expression data of the 20 genes in patients randomly assigned to a training set, using the ridge-penalized Cox regression, and tested in an independent validation set. FINDINGS: Analyses revealed that the 20-gene stem cell signature provided prognostic information in Triple-Negative and Luminal breast cancer patients, independently of standard clinicopathological parameters. Through functional studies in individual tumours, we correlated the risk score assigned by the signature with the proliferative and self-renewal potential of the cancer stem cell population. By retraining the 20-gene signature in Luminal patients, we derived the risk model, StemPrintER, which predicted early and late recurrence independently of standard prognostic factors. INTERPRETATION: Our findings indicate that the 20-gene stem cell signature, by its unique ability to interrogate the biology of cancer stem cells of the primary tumour, provides a reliable estimate of metastatic risk in Triple-Negative and Luminal breast cancer patients independently of standard clinicopathological parameters.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Família Multigênica , Células-Tronco Neoplásicas/metabolismo , Adulto , Idoso , Neoplasias da Mama/mortalidade , Feminino , Perfilação da Expressão Gênica , Genômica/métodos , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Transcriptoma
18.
Life Sci Alliance ; 2(1)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30692166

RESUMO

EPS15 and its homologous EPS15L1 are endocytic accessory proteins. Studies in mammalian cell lines suggested that EPS15 and EPS15L1 regulate endocytosis in a redundant manner. However, at the organismal level, it is not known to which extent the functions of the two proteins overlap. Here, by exploiting various constitutive and conditional null mice, we report redundant and nonredundant functions of the two proteins. EPS15L1 displays a unique nonredundant role in the nervous system, whereas both proteins are fundamental during embryo development as shown by the embryonic lethality of -Eps15/Eps15L1-double KO mice. At the cellular level, the major process redundantly regulated by EPS15 and EPS15L1 is the endocytosis of the transferrin receptor, a pathway that sustains the development of red blood cells and controls iron homeostasis. Consequently, hematopoietic-specific conditional Eps15/Eps15L1-double KO mice display traits of microcytic hypochromic anemia, due to a cell-autonomous defect in iron internalization.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Endocitose/fisiologia , Anemia Hipocrômica/genética , Animais , Escala de Avaliação Comportamental , Desenvolvimento Embrionário/fisiologia , Eritrócitos/metabolismo , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Genes Letais/fisiologia , Hipocampo/citologia , Ferro/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Receptores da Transferrina/metabolismo , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína , Sinapses/metabolismo
19.
Bioinformatics ; 35(1): 36-46, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29961866

RESUMO

Motivation: Breast cancer is the most commonly diagnosed malignancy in women and the second cause of cancer death in developed countries. While advancements in early detection and therapeutic options have led to a significant decrease in mortality, response to treatment is affected by the genetic heterogeneity of the disease. Recent genome-wide DNA mutation analyses revealed the existence of hundreds of low-frequency mutated genes, in addition to known cancer drivers: a finding that is prompting research into the impact of these genes on the pathogenesis of the disease. Results: Herein, we describe a strategy towards the characterization of the role of low-frequency mutated genes in breast cancer. Through the combined analyses of publicly available gene expression and mutational datasets, we identified several Cancer Gene Modules (CMs) that we re-organized in Gene Regulatory Networks (GRN) enriched in low-frequency mutated genes. Importantly, these low-frequency mutated genes were mutually exclusive with known cancer drivers. Finally, we provide evidence that gene expression analysis of these mutated GRNs can predict resistance/sensitivity to chemotherapeutic drugs for breast cancer treatment. Availability and implementation: Datasets are available at https://www.ncbi.nlm.nih.gov/geo/ and at https://www.ebi.ac.uk/ega/datasets/. Molecular signatures and GSEA software are available at http://www.gsea-msigdb.org/gsea/index.jsp. Source codes are available at https://github.com/EleonoraLusito/Reverse_Engineering_BC_GRNs. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Neoplasias da Mama/genética , Análise Mutacional de DNA/métodos , Mutação , Software , Biologia Computacional , Feminino , Expressão Gênica , Redes Reguladoras de Genes , Humanos
20.
J Cell Biol ; 217(9): 3161-3182, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30061108

RESUMO

The endocytic protein NUMB has been implicated in the control of various polarized cellular processes, including the acquisition of mesenchymal migratory traits through molecular mechanisms that have only been partially defined. Here, we report that NUMB is a negative regulator of a specialized set of understudied, apically restricted, actin-based protrusions, the circular dorsal ruffles (CDRs), induced by either PDGF or HGF stimulation. Through its PTB domain, NUMB binds directly to an N-terminal NPLF motif of the ARF6 guanine nucleotide exchange factor, EFA6B, and promotes its exchange activity in vitro. In cells, a NUMB-EFA6B-ARF6 axis regulates the recycling of the actin regulatory cargo RAC1 and is critical for the formation of CDRs that mark the acquisition of a mesenchymal mode of motility. Consistently, loss of NUMB promotes HGF-induced cell migration and invasion. Thus, NUMB negatively controls membrane protrusions and the acquisition of mesenchymal migratory traits by modulating EFA6B-ARF6 activity.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Movimento Celular/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Membrana/metabolismo , Mesoderma/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fator 6 de Ribosilação do ADP , Linhagem Celular Tumoral , Polaridade Celular , Células HeLa , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Proteínas de Membrana/genética , Mesoderma/citologia , Proteínas do Tecido Nervoso/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo , Ligação Proteica , Domínios Proteicos , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA