Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Metab ; 35(7): 1179-1194.e5, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37437544

RESUMO

Emerging new evidence highlights the importance of prolonged daily fasting periods for the health and survival benefits of calorie restriction (CR) and time-restricted feeding (TRF) in male mice; however, little is known about the impact of these feeding regimens in females. We placed 14-month-old female mice on five different dietary regimens, either CR or TRF with different feeding windows, and determined the effects of these regimens on physiological responses, progression of neoplasms and inflammatory diseases, serum metabolite levels, and lifespan. Compared with TRF feeding, CR elicited a robust systemic response, as it relates to energetics and healthspan metrics, a unique serum metabolomics signature in overnight fasted animals, and was associated with an increase in lifespan. These results indicate that daytime (rest-phase) feeding with prolonged fasting periods initiated late in life confer greater benefits when combined with imposed lower energy intake.


Assuntos
Restrição Calórica , Jejum , Feminino , Masculino , Animais , Camundongos , Ingestão de Energia , Jejum Intermitente , Longevidade
2.
Transfusion ; 63(4): 791-797, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36840440

RESUMO

BACKGROUND: Human leukocyte antigen (HLA) alloimmunization can occur after platelet transfusion. These antibodies can complicate future platelet transfusions or organ transplantation. Animal data suggest that Mirasol pathogen reduction treatment (PRT) can prevent alloimmunization after transfusion. STUDY DESIGN AND METHODS: The MIPLATE trial enrolled 330 of a planned 660 participants with hematological malignancies at risk for grade 2 or greater bleeding. The study was halted early for futility after a planned interim analysis. Participants were randomized to receive PRT versus standard control platelets. Serum samples were collected from participants at baseline (pretransfusion), weekly for the first 4 weeks, then at days 42 and 56. HLA antibody levels were determined using a commercial multianalyte bead-based assay. HLA antibody levels were analyzed using low, medium, and high cutoffs based on prior studies. RESULTS: The rate of alloimmunization was low in both arms of the study, particularly at the high HLA antibody cutoff (total of 6 of 277 subjects at risk, or 2.2%). The risk of alloimmunization did not differ between study arms, nor did the risk of immune refractoriness to platelet transfusion. CONCLUSIONS: The data do not support the conclusion that Mirasol exerted a protective effect against alloimmunization after platelet transfusion in the MIPLATE trial.


Assuntos
Plaquetas , Isoanticorpos , Animais , Humanos , Transfusão de Plaquetas/efeitos adversos , Antígenos HLA , Antígenos de Histocompatibilidade Classe I
3.
Sci Rep ; 11(1): 7554, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824382

RESUMO

A coronavirus antigen microarray (COVAM) was constructed containing 11 SARS-CoV-2, 5 SARS-1, 5 MERS, and 12 seasonal coronavirus recombinant proteins. The array is designed to measure immunoglobulin isotype and subtype levels in serum or plasma samples against each of the individual antigens printed on the array. We probed the COVAM with COVID-19 convalescent plasma (CCP) collected from 99 donors who recovered from a PCR+ confirmed SARS-CoV-2 infection. The results were analyzed using two computational approaches, a generalized linear model (glm) and random forest (RF) prediction model, to classify individual specimens as either Reactive or non-reactive against the SARS-CoV-2 antigens. A training set of 88 pre-COVID-19 specimens (PreCoV) collected in August 2019 and102 positive specimens from SARS-CoV-2 PCR+ confirmed COVID-19 cases was used for these analyses. Results compared with an FDA emergency use authorized (EUA) SARS-CoV2 S1-based total Ig chemiluminescence immunoassay (Ortho Clinical Diagnostics VITROS Anti-SARS-CoV-2 Total, CoV2T) and with a SARS-CoV-2 S1-S2 spike-based pseudovirus micro neutralization assay (SARS-CoV-2 reporter viral particle neutralization titration (RVPNT) showed high concordance between the three assays. Three CCP specimens that were negative by the VITROS CoV2T immunoassay were also negative by both COVAM and the RVPNT assay. Concordance between VITROS CoV2T and COVAM was 96%, VITROS CoV2T and RVPNT 93%, and RVPNT and COVAM 91%. The discordances were all weakly reactive samples near the cutoff threshold of the VITROS CoV2T immunoassay. The multiplex COVAM allows CCP to be grouped according to antibody reactivity patterns against 11 SARS-CoV-2 antigens. Unsupervised K-means analysis, via the gap statistics, as well as hierarchical clustering analysis revealed three main clusters with distinct reactivity intensities and patterns. These patterns were not recapitulated by adjusting the VITROS CoV2T or RVPNT assay thresholds. Plasma classified by COVAM reactivity patterns offers potential to improve CCP therapeutic efficacy CoV2T alone. The use of a SARS-CoV-2 antigen array can qualify CCP for administration as a treatment for acute COVID-19, and interrogate vaccine immunogenicity and performance in preclinical, clinical studies, and routine vaccination to identify antibody responses predictive of protection from infection and disease.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/terapia , SARS-CoV-2/imunologia , Imunidade Adaptativa , Coronavirus/imunologia , Humanos , Imunidade Humoral , Imunização Passiva , Soroterapia para COVID-19
4.
Cell Metab ; 32(2): 203-214.e4, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32413333

RESUMO

Obesity is a top public health concern, and a molecule that safely treats obesity is urgently needed. Disulfiram (known commercially as Antabuse), an FDA-approved treatment for chronic alcohol addiction, exhibits anti-inflammatory properties and helps protect against certain types of cancer. Here, we show that in mice disulfiram treatment prevented body weight gain and abrogated the adverse impact of an obesogenic diet on insulin responsiveness while mitigating liver steatosis and pancreatic islet hypertrophy. Additionally, disulfiram treatment reversed established diet-induced obesity and metabolic dysfunctions in middle-aged mice. Reductions in feeding efficiency and increases in energy expenditure were associated with body weight regulation in response to long-term disulfiram treatment. Loss of fat tissue and an increase in liver fenestrations were also observed in rats on disulfiram. Given the potent anti-obesogenic effects in rodents, repurposing disulfiram in the clinic could represent a new strategy to treat obesity and its metabolic comorbidities.


Assuntos
Fármacos Antiobesidade/farmacologia , Peso Corporal/efeitos dos fármacos , Dissulfiram/farmacologia , Obesidade/tratamento farmacológico , Animais , Dieta/efeitos adversos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/induzido quimicamente , Obesidade/metabolismo , Ratos , Ratos Sprague-Dawley
5.
PLoS One ; 14(3): e0214301, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30925184

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs that critically regulate gene expression. Their abundance and function have been linked to a range of physiologic and pathologic processes. In aged monkey muscle, miR-451a and miR-144-3p were far more abundant than in young monkey muscle. This observation led us to hypothesize that miR-451a and miR-144-3p may influence muscle homeostasis. To test if these conserved microRNAs were implicated in myogenesis, we investigated their function in the mouse myoblast line C2C12. The levels of both microRNAs declined with myogenesis; however, only overexpression of miR-451a, but not miR-144-3p, robustly impeded C2C12 differentiation, suggesting an inhibitory role for miR-451a in myogenesis. Further investigation of the regulatory influence of miR-451a identified as one of the major targets Sparc mRNA, which encodes a secreted protein acidic and rich in cysteine (SPARC) that functions in wound healing and cellular differentiation. In mouse myoblasts, miR-451a suppressed Sparc mRNA translation. Together, our findings indicate that miR-451a is downregulated in differentiated myoblasts and suggest that it decreases C2C12 differentiation at least in part by suppressing SPARC biosynthesis.


Assuntos
MicroRNAs/genética , Desenvolvimento Muscular , Osteonectina/genética , Osteonectina/metabolismo , Regiões 3' não Traduzidas , Animais , Linhagem Celular , Proliferação de Células , Camundongos , Mioblastos/citologia , Mioblastos/metabolismo , Polirribossomos/genética , Polirribossomos/metabolismo , Biossíntese de Proteínas
6.
Front Cell Dev Biol ; 4: 135, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27921031

RESUMO

The number of elderly people is growing at an unprecedented rate and this increase of the aging population is expected to have a direct impact on the incidence of age-related diseases and healthcare-associated costs. Thus, it is imperative that new tools are developed to fight and slow age-related diseases. Regenerative medicine is a promising strategy for the maintenance of health and function late in life; however, stem cell-based therapies face several challenges including rejection and tumor transformation. As an alternative, the placenta offers an extraordinary source of fetal stem cells, including the amniotic epithelial cells (AECs), which retain some of the characteristics of embryonic stem cells, but show low immunogenicity, together with immunomodulatory and anti-inflammatory activities. Because of these characteristics, AECs have been widely utilized in regenerative medicine. This perspective highlights different mechanisms triggered by transplanted AECs that could be potentially useful for anti-aging therapies, which include: Graft and differentiation for tissue regeneration in age-related settings, anti-inflammatory behavior to combat "inflammaging," anti-tumor activity, direct lifespan and healthspan extension properties, and possibly rejuvenation in a manner reminiscent of heterochronic parabiosis. Here, we critically discuss benefits and limitation of AECs-based therapies in age-related diseases.

7.
Free Radic Biol Med ; 99: 225-233, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27515817

RESUMO

NAD(P)H: quinone oxidoreductase (NQO1) is essential for cell defense against reactive oxidative species, cancer, and metabolic stress. Recently, NQO1 was found in ribonucleoprotein (RNP) complexes, but NQO1-interacting mRNAs and the functional impact of such interactions are not known. Here, we used ribonucleoprotein immunoprecipitation (RIP) and microarray analysis to identify comprehensively the subset of NQO1 target mRNAs in human hepatoma HepG2 cells. One of its main targets, SERPINA1 mRNA, encodes the serine protease inhibitor α-1-antitrypsin, A1AT, which is associated with disorders including obesity-related metabolic inflammation, chronic obstructive pulmonary disease (COPD), liver cirrhosis and hepatocellular carcinoma. Biotin pulldown analysis indicated that NQO1 can bind the 3' untranslated region (UTR) and the coding region (CR) of SERPINA1 mRNA. NQO1 did not affect SERPINA1 mRNA levels; instead, it enhanced the translation of SERPINA1 mRNA, as NQO1 silencing decreased the size of polysomes forming on SERPINA1 mRNA and lowered the abundance of A1AT. Luciferase reporter analysis further indicated that NQO1 regulates SERPINA1 mRNA translation through the SERPINA1 3'UTR. Accordingly, NQO1-KO mice had reduced hepatic and serum levels of A1AT and increased activity of neutrophil elastase (NE), one of the main targets of A1AT. We propose that this novel mechanism of action of NQO1 as an RNA-binding protein may help to explain its pleiotropic biological effects.


Assuntos
NAD(P)H Desidrogenase (Quinona)/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , alfa 1-Antitripsina/genética , Animais , Sítios de Ligação , Regulação da Expressão Gênica , Genes Reporter , Células Hep G2 , Humanos , Elastase de Leucócito/genética , Elastase de Leucócito/metabolismo , Luciferases/genética , Luciferases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise em Microsséries , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , NAD(P)H Desidrogenase (Quinona)/metabolismo , Ligação Proteica , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Transdução de Sinais , alfa 1-Antitripsina/metabolismo
8.
Oncotarget ; 7(26): 39051-39064, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27259996

RESUMO

Amniotic epithelial cells (AECs) are a class of fetal stem cells that derives from the epiblast and resides in the amnion until birth. AECs are suitable candidates for regenerative medicine because of the ease of collection, their low immunogenicity and inability to form tumors after transplantation. Even though human AECs have been widely investigated, the fact remains that very little is known about AECs isolated from rat, one of the most common animal models in medical testing. In this study, we showed that rat AECs retained stemness properties and plasticity, expressed the pluripotency markers Sox2, Nanog, and Oct4 and were able to differentiate toward the osteogenic lineage. The addition of conditioned medium collected from rat AECs to lipopolysaccharide-activated macrophages elicited anti-inflammatory properties through a decrease of Tnfa expression and slowed tumor cell proliferation in vitro and in vivo. The senescence-associated secretory phenotype was also significantly lower upon incubation of senescent human IMR-90 fibroblast cells with conditioned medium from rat AECs. These results confirm the potential of AECs in the modulation of inflammatory mechanisms and open new therapeutic possibilities for regenerative medicine and anti-aging therapies as well.


Assuntos
Líquido Amniótico/citologia , Senescência Celular , Meios de Cultivo Condicionados/química , Células Epiteliais/citologia , Inflamação , Neoplasias , Animais , Anti-Inflamatórios/química , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Neoplasias/metabolismo , Osteogênese , Fenótipo , Células RAW 264.7 , Ratos , Células-Tronco/citologia , Fator de Necrose Tumoral alfa/metabolismo
9.
Nucleic Acids Res ; 44(5): 2393-408, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26819411

RESUMO

Skeletal muscle contains long multinucleated and contractile structures known as muscle fibers, which arise from the fusion of myoblasts into multinucleated myotubes during myogenesis. The myogenic regulatory factor (MRF) MYF5 is the earliest to be expressed during myogenesis and functions as a transcription factor in muscle progenitor cells (satellite cells) and myocytes. In mouse C2C12 myocytes, MYF5 is implicated in the initial steps of myoblast differentiation into myotubes. Here, using ribonucleoprotein immunoprecipitation (RIP) analysis, we discovered a novel function for MYF5 as an RNA-binding protein which associated with a subset of myoblast mRNAs. One prominent MYF5 target was Ccnd1 mRNA, which encodes the key cell cycle regulator CCND1 (Cyclin D1). Biotin-RNA pulldown, UV-crosslinking and gel shift experiments indicated that MYF5 was capable of binding the 3' untranslated region (UTR) and the coding region (CR) of Ccnd1 mRNA. Silencing MYF5 expression in proliferating myoblasts revealed that MYF5 promoted CCND1 translation and modestly increased transcription of Ccnd1 mRNA. Accordingly, overexpressing MYF5 in C2C12 cells upregulated CCND1 expression while silencing MYF5 reduced myoblast proliferation as well as differentiation of myoblasts into myotubes. Moreover, MYF5 silencing reduced myogenesis, while ectopically restoring CCND1 abundance partially rescued the decrease in myogenesis seen after MYF5 silencing. We propose that MYF5 enhances early myogenesis in part by coordinately elevating Ccnd1 transcription and Ccnd1 mRNA translation.


Assuntos
Ciclina D1/genética , Desenvolvimento Muscular/genética , Fator Regulador Miogênico 5/genética , RNA Mensageiro/genética , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Ciclina D1/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Camundongos , Análise em Microsséries , Mioblastos , Fator Regulador Miogênico 5/metabolismo , Ligação Proteica , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais
10.
J Nutr Biochem ; 26(3): 250-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25533906

RESUMO

Extravirgin olive oil (EVOO) represents the typical lipid source of the Mediterranean diet, an eating habit pattern that has been associated with a significant reduction of cancer risk. Diet is the more studied environmental factor in epigenetics, and many evidences suggest dysregulation of epigenetic pathways in cancer. The aim of our study was to investigate the effects of EVOO and its phenolic compounds on endocannabinoid system (ECS) gene expression via epigenetic regulation in both human colon cancer cells (Caco-2) and rats exposed to short- and long-term dietary EVOO. We observed a selective and transient up-regulation of CNR1 gene - encoding for type 1 cannabinoid receptor (CB1) - that was evoked by exposure of Caco-2 cells to EVOO (100 ppm), its phenolic extracts (OPE, 50 µM) or authentic hydroxytyrosol (HT, 50 µM) for 24 h. None of the other major elements of the ECS (i.e., CB2; GPR55 and TRPV1 receptors; and NAPE-PLD, DAGL, FAAH and MAGL enzymes) was affected at any time point. The stimulatory effect of OPE and HT on CB1 expression was inversely correlated to DNA methylation at CNR1 promoter and was associated with reduced proliferation of Caco-2 cells. Interestingly, CNR1 gene was less expressed in Caco-2 cells when compared to normal colon mucosa cells, and again this effect was associated with higher level of DNA methylation at CNR1. Moreover, in agreement with the in vitro studies, we also observed a remarkable (~4-fold) and selective increase in CB1 expression in the colon of rats receiving dietary EVOO supplementation for 10 days. Consistently, CpG methylation of rat Cnr1 promoter, miR23a and miR-301a, previously shown to be involved in the pathogenesis of colorectal cancer and predicted to target CB1 mRNA, was reduced after EVOO administration down to ~50% of controls. Taken together, our findings demonstrating CB1 gene expression modulation by EVOO or its phenolic compounds via epigenetic mechanism, both in vitro and in vivo, may provide a new therapeutic avenue for treatment and/or prevention of colon cancer.


Assuntos
Colo/metabolismo , Neoplasias do Colo/metabolismo , Epigênese Genética , Óleos de Plantas/metabolismo , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/metabolismo , Regulação para Cima , Animais , Células CACO-2 , Linhagem Celular , Proliferação de Células , Colo/citologia , Colo/patologia , Neoplasias do Colo/patologia , Neoplasias do Colo/prevenção & controle , Metilação de DNA , Gorduras Insaturadas na Dieta/metabolismo , Gorduras Insaturadas na Dieta/normas , Gorduras Insaturadas na Dieta/uso terapêutico , Feminino , Frutas/química , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Olea/química , Azeite de Oliva , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/metabolismo , Extratos Vegetais/metabolismo , Óleos de Plantas/química , Óleos de Plantas/normas , Regiões Promotoras Genéticas , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/química , Receptor CB1 de Canabinoide/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA