Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38534381

RESUMO

The identification of new therapeutic targets and the development of innovative therapeutic approaches are the most important challenges for osteosarcoma treatment. In fact, despite being relatively rare, recurrence and metastatic potential, particularly to the lungs, make osteosarcoma a deadly form of cancer. In fact, although current treatments, including surgery and chemotherapy, have improved survival rates, the disease's recurrence and metastasis are still unresolved complications. Insights for analyzing the still unclear molecular mechanisms of osteosarcoma development, and for finding new therapeutic targets, may arise from the study of post-translational protein modifications. Indeed, they can influence and alter protein structure, stability and function, and cellular interactions. Among all the post-translational modifications, ubiquitin-like modifications (ubiquitination, deubiquitination, SUMOylation, and NEDDylation), as well as glycosylation, are the most important for regulating protein stability, which is frequently altered in cancers including osteosarcoma. This review summarizes the relevance of ubiquitin-like modifications and glycosylation in osteosarcoma progression, providing an overview of protein stability regulation, as well as highlighting the molecular mediators of these processes in the context of osteosarcoma and their possible targeting for much-needed novel therapy.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Glicosilação , Ubiquitina , Osteossarcoma/patologia , Neoplasias Ósseas/patologia , Estabilidade Proteica
2.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38139010

RESUMO

Ubiquitination is a post-translational modification that targets specific proteins on their lysine residues. Depending on the type of ubiquitination, this modification ultimately regulates the stability or degradation of the targeted proteins. Ubiquitination is mediated by three different classes of enzymes: the E1 ubiquitin-activating enzymes, the E2 ubiquitin-conjugating enzymes and, most importantly, the E3 ubiquitin ligases. E3 ligases are responsible for the final step of the ubiquitin cascade, interacting directly with the target proteins. E3 ligases can also be involved in DNA repair, cell cycle regulation and response to stress; alteration in their levels can be involved in oncogenic transformation and cancer progression. Of all the six hundred E3 ligases of the human genome, only three of them are specific to the mitochondrion: MARCH5, RNF185 and MUL1. Their alterations (that reflect on the alteration of the mitochondria functions) can be related to cancer progression, as underlined by the increasing research performed in recent years on these three mitochondrial enzymes. This review will focus on the function and mechanisms of the mitochondrial E3 ubiquitin ligases, as well as their important targets, in cancer development and progression, also highlighting their potential use for cancer therapy.


Assuntos
Neoplasias , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Ubiquitina/metabolismo , Proteínas/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Mitocôndrias/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Proteínas Mitocondriais/metabolismo
3.
Arch Biochem Biophys ; 734: 109489, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36526001

RESUMO

The therapeutic strategies for osteosarcoma involve both surgical approach and chemotherapy, but the identification of new therapeutic targets is particularly necessary in patients with local chemo-resistance, recurrence and lung metastases. The role of epigenetic regulation in osteosarcoma is largely unknown. Thus, in this study we disclosed the effects of histone deacetylase inhibitor drug PXD-101 on human osteosarcoma (OS) cell lines with different aggressiveness, including Saos-2, HOS and 143B cell lines. XTT assays revealed that treatment of Saos-2, HOS and 143B cells with PXD-101 decreased cell viability in a concentration-dependent manner. Fluorescence-activated cell sorting (FACS) analysis showed that PXD-101 inhibited proliferation and induced cell apoptosis. Wound healing assay indicated that PXD-101 inhibited migration of osteosarcoma cells. Real-Time RT-qPCR and protein analysis highlighted reduced expression of Runx2, Osterix and Mad2, probably due to Cyclin B1 inhibition by PXD-101 treatment. To our knowledge, this is the first study that characterized the anti-tumoral effect of PXD-101 in OS cells, suggesting a potential new therapeutic approach in osteosarcoma patients.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Epigênese Genética , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Apoptose , Neoplasias Ósseas/genética , Movimento Celular
4.
Eur J Cell Biol ; 101(3): 151225, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35453093

RESUMO

Metabolic alterations have been observed in many cancer types. The deregulated metabolism has thus become an emerging hallmark of the disease, where the metabolism is frequently rewired to aerobic glycolysis. This has led to the concept of "metabolic reprogramming", which has therefore been extensively studied. Over the years, it has been characterized the enhancement of aerobic glycolysis, where key mutations in some of the enzymes of the TCA cycle, and the increased glucose uptake, are used by cancer cells to achieve a "metabolic phenotype" useful to gain a proliferation advantage. Many studies have highlighted in detail the signaling pathways and the molecular mechanisms responsible for the glycolytic switch. However, glycolysis is not the only metabolic process that cancer cells rely on. Oxidative Phosphorylation (OXPHOS), gluconeogenesis or the beta-oxidation of fatty acids (FAO) may be involved in the development and progression of several tumors. In some cases, these metabolisms are even more crucial than aerobic glycolysis for the tumor survival. This review will focus on the contribution of these alterations of metabolism to the development and survival of cancers. We will also analyze the molecular mechanisms by which the balance between these metabolic processes may be regulated, as well as some of the therapeutical approaches that can derive from their study.


Assuntos
Neoplasias , Fosforilação Oxidativa , Metabolismo Energético , Ácidos Graxos/metabolismo , Glicólise , Humanos , Mitocôndrias/metabolismo , Neoplasias/patologia
5.
Sci Rep ; 10(1): 1609, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005965

RESUMO

MUL1 is a multifunctional E3 ubiquitin ligase anchored in the outer mitochondrial membrane with its RING finger domain facing the cytoplasm. MUL1 participates in various biological pathways involved in apoptosis, mitochondrial dynamics, and innate immune response. The unique topology of MUL1 enables it to "sense" mitochondrial stress in the intermembrane mitochondrial space and convey these signals through the ubiquitination of specific cytoplasmic substrates. We have identified UBXN7, the cofactor protein of the CRL2VHL ligase complex, as a specific substrate of MUL1 ligase. CRL2VHL ligase complex regulates HIF-1α protein levels under aerobic (normoxia) or anaerobic (hypoxia) conditions. Inactivation of MUL1 ligase leads to accumulation of UBXN7, with concomitant increase in HIF-1α protein levels, reduction in oxidative phosphorylation, and increased glycolysis. We describe a novel pathway that originates in the mitochondria and operates upstream of the CRL2VHL ligase complex. Furthermore, we delineate the mechanism by which the mitochondria, through MUL1 ligase, can inhibit the CRL2VHL complex leading to high HIF-1α protein levels and a metabolic shift to glycolysis under normoxic conditions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Mitocôndrias/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Glicólise/fisiologia , Células HEK293 , Células HeLa , Humanos , Dinâmica Mitocondrial/fisiologia , Membranas Mitocondriais/metabolismo , Ubiquitinação/fisiologia
6.
PLoS One ; 13(11): e0206894, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30418986

RESUMO

OBJECTIVE: Obesity is the result of white adipose tissue accumulation where excess of food energy is stored to form triglycerides. De novo lipogenesis (DNL) is the continuous process of new fat production and is driven by the transcription factor ChREBP. During adipogenesis, white adipocytes change their morphology and the entire cell volume is occupied by one large lipid droplet. Recent studies have implicated an essential role of autophagy in adipogenic differentiation, cytoplasmic remodelling and mitochondria reorganization. The phenolic monoterpenoid carvacrol (2-methyl-5-[1-methylethyl]phenol), produced by numerous aromatic plants, has been shown to reduce lipid accumulation in murine 3T3-L1 cells during adipogenic differentiation by modulating genes associated with adipogenesis and inflammation. Therefore, the aim of this study was to evaluate whether carvacrol could affect autophagy and ChREBP expression during adipogenic differentiation. METHODS: The study was carried on by using the murine 3T3-L1 and the human WJ-MSCs (Wharton's jelly-derived mesenchymal stem cells) cell lines. Cells undergoing adipogenic differentiation were untreated or treated with carvacrol. Adipogenic differentiation was assessed by analyzing cellular lipid accumulation with Oil-Red O staining and by ultrastructural examination with TEM. Autophagy was evaluated by western immunoblotting of autophagy markers LC3B and p62/SQSTM and by ultrastructural examination of autophagic bodies. Autophagic flux was evaluated by using autophagy inhibitor cloroquine (CQ). ChREBP expression levels was assessed by both western blotting and immunoelectron microscopy and ChREBP activity by analysis of adipogenic target genes expression. RESULTS: We found that carvacrol reduced adipogenic differentiation of about 40% and 30% in, respectively, 3T3-L1 and in WJ-MSCs cells. The effect of carvacrol on adipogenic differentiation correlated with both reduction of autophagy and reduction of ChREBP expression. CONCLUSION: The results support the notion that carvacrol, through its effect on autophagy (essential for adipocyte maturation) and on ChREBP activity, could be used as a valuable adjuvant to reduce adipogenic differentiation.


Assuntos
Adipogenia/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Monoterpenos/farmacologia , Proteínas Nucleares/metabolismo , Obesidade/tratamento farmacológico , Fatores de Transcrição/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/fisiologia , Adipogenia/fisiologia , Animais , Autofagia/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Linhagem Celular , Cimenos , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Camundongos , Monoterpenos/uso terapêutico , Obesidade/etiologia , Cultura Primária de Células , Geleia de Wharton/citologia
7.
Scand J Gastroenterol ; 50(1): 53-65, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25523556

RESUMO

Intestinal fibrosis is a common complication of the inflammatory bowel diseases (IBDs). It becomes clinically apparent in >30% of patients with Crohn's disease (CD) and in about 5% with ulcerative colitis (UC). Fibrosis is a consequence of local chronic inflammation and is characterized by excessive extracellular matrix (ECM) protein deposition. ECM is produced by activated myofibroblasts, which are modulated by both, profibrotic and antifibrotic factors. Fibrosis depends on the balance between the production and degradation of ECM proteins. This equilibrium can be impacted by a complex and dynamic interaction between profibrotic and antifibrotic mediators. Despite the major therapeutic advances in the treatment of active inflammation in IBD over the past two decades, the incidence of intestinal strictures in CD has not significantly changed as the current anti-inflammatory therapies neither prevent nor reverse the established fibrosis and strictures. This implies that control of intestinal inflammation does not necessarily affect the associated fibrotic process. The conventional view that intestinal fibrosis is an inevitable and irreversible process in patients with IBD is also gradually changing in light of an improved understanding of the cellular and molecular mechanisms that underline the pathogenesis of fibrosis. Comprehension of the mechanisms of intestinal fibrosis is thus vital and may pave the way for the developments of antifibrotic agents and new therapeutic approaches in IBD.


Assuntos
Colite Ulcerativa/patologia , Doença de Crohn/patologia , Mucosa Intestinal/patologia , Apoptose , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Doença de Crohn/tratamento farmacológico , Doença de Crohn/metabolismo , Progressão da Doença , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Fibrose , Fármacos Gastrointestinais/uso terapêutico , Humanos , Mucosa Intestinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA