Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 7037, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857760

RESUMO

Growing evidence supports the importance of the p53 tumor suppressor in metabolism but the mechanisms underlying p53-mediated control of metabolism remain poorly understood. Here, we identify the multifunctional E4F1 protein as a key regulator of p53 metabolic functions in adipocytes. While E4F1 expression is upregulated during obesity, E4f1 inactivation in mouse adipose tissue results in a lean phenotype associated with insulin resistance and protection against induced obesity. Adipocytes lacking E4F1 activate a p53-dependent transcriptional program involved in lipid metabolism. The direct interaction between E4F1 and p53 and their co-recruitment to the Steaoryl-CoA Desaturase-1 locus play an important role to regulate monounsaturated fatty acids synthesis in adipocytes. Consistent with the role of this E4F1-p53-Steaoryl-CoA Desaturase-1 axis in adipocytes, p53 inactivation or diet complementation with oleate partly restore adiposity and improve insulin sensitivity in E4F1-deficient mice. Altogether, our findings identify a crosstalk between E4F1 and p53 in the control of lipid metabolism in adipocytes that is relevant to obesity and insulin resistance.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Obesidade/genética , Proteínas Repressoras/genética , Estearoil-CoA Dessaturase/genética , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/genética , Adipócitos/patologia , Tecido Adiposo/patologia , Adulto , Idoso , Animais , Índice de Massa Corporal , Ácidos Graxos Monoinsaturados/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Resistência à Insulina , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Obesidade/metabolismo , Obesidade/patologia , Proteínas Repressoras/deficiência , Proteínas Repressoras/metabolismo , Transdução de Sinais , Estearoil-CoA Dessaturase/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/metabolismo
2.
J Proteome Res ; 14(10): 4179-93, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26293246

RESUMO

Likely due to conformational rearrangements, small molecule inhibitors may stabilize the active conformation of protein kinases and paradoxically promote tumorigenesis. We combined limited proteolysis with stable isotope labeling MS to monitor protein conformational changes upon binding of small molecules. Applying this method to the human serine/threonine kinase B-Raf, frequently mutated in cancer, we found that binding of ATP or its nonhydrolyzable analogue AMP-PNP, but not ADP, stabilized the structure of both B-Raf(WT) and B-Raf(V600E). The ATP-competitive type I B-Raf inhibitor vemurafenib and the type II inhibitor sorafenib stabilized the kinase domain (KD) but had distinct effects on the Ras-binding domain. Stabilization of the B-Raf(WT) KD was confirmed by hydrogen/deuterium exchange MS and molecular dynamics simulations. Our results are further supported by cellular assays in which we assessed cell viability and phosphorylation profiles in cells expressing B-Raf(WT) or B-Raf(V600E) in response to vemurafenib or sorafenib. Our data indicate that an overall stabilization of the B-Raf structure by specific inhibitors activates MAPK signaling and increases cell survival, helping to explain clinical treatment failure. We also applied our method to monitor conformational changes upon nucleotide binding of the pseudokinase KSR1, which holds high potential for inhibition in human diseases.


Assuntos
Marcação por Isótopo/métodos , Inibidores de Proteínas Quinases/química , Proteínas Quinases/química , Proteômica/métodos , Proteínas Proto-Oncogênicas B-raf/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Adenilil Imidodifosfato/química , Adenilil Imidodifosfato/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Medição da Troca de Deutério , Humanos , Indóis/química , Indóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Espectrometria de Massas/métodos , Simulação de Dinâmica Molecular , Mutação , Niacinamida/análogos & derivados , Niacinamida/química , Niacinamida/farmacologia , Peptídeos/análise , Compostos de Fenilureia/química , Compostos de Fenilureia/farmacologia , Fosforilação/efeitos dos fármacos , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteólise , Proteômica/instrumentação , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Sorafenibe , Sulfonamidas/química , Sulfonamidas/farmacologia , Tripsina/química , Vemurafenib
3.
J Med Chem ; 58(4): 1818-31, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25611072

RESUMO

The V600E missense mutation in B-Raf kinase leads to an anomalous regulation of the MAPK pathway, uncontrolled cell proliferation, and initiation of tumorigenesis. While the ATP-competitive B-Raf inhibitors block the MAPK pathway in B-Raf mutant cells, they induce conformational changes to wild-type B-Raf kinase domain leading to heterodimerization with C-Raf causing a paradoxical hyperactivation of MAPK pathway. A new class of inhibitors (paradox breakers) has been developed that inhibit B-Raf(V600E) activity without agonistically affecting the MAPK pathway in wild-type B-Raf cells. In this study, we explore the structural, conformational, and cellular effects on the B-Raf kinase domain upon binding of paradox breakers and inducers. Our results indicate that a subtle structural difference between paradox inducers and breakers leads to significant conformational differences when complexed with B-Raf. This study provides a novel insight into the activation of B-Raf by ATP-competitive inhibitors and can aid in the design of more potent and selective inhibitors without agonistic function.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Relação Estrutura-Atividade
4.
J Proteomics ; 86: 53-69, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23681173

RESUMO

Alternating hemiplegia of childhood (AHC) is a rare syndrome with repeated hemiplegic episodes, paroxysmal events and global neurological impairment. Recently, heterozygous de novo ATP1A3 missense mutations have been identified in AHC patients, but the underlying pathogenesis mechanism remains unknown. Mutation analysis of ATP1A3 in 9 unrelated AHC cases revealed mostly D801N or E815K variants. As platelets represent a good cellular model to study defects in neuropathologies, morphological and functional experiments were performed in these subjects. Platelets from the AHC patients presented with structural and functional abnormalities of granules positive for the lysosomal marker CD63. Similar structural granule abnormalities were detected in patients' fibroblasts. Proteomic analysis of platelets and fibroblasts showed a total of 93 differentially expressed proteins in AHC mainly involved in metabolism. Interestingly, 7 of these proteins were detected in both cell types, including the lysosomal protein cathepsin. AHC fibroblasts revealed significantly increased levels of activated cathepsin B, which induces a stronger activation of apoptosis. Our study is the first to link ATP1A3 defects in AHC to a platelet and fibroblast lysosomal defect with evidence of increased apoptosis. Further studies are needed to define how this lysosomal defect is related to decreased ATPase activity. Biological Significance Only recently, the genetic cause of AHC was identified as heterozygous ATP1A3 mutations, but the underlying pathophysiological mechanism still remains unknown. By performing functional, morphological and proteomic studies in AHC patients we found a structural and functional granule defect in AHC platelets and fibroblasts that was specifically found in granules positive for the lysosomal marker CD63. In particular, proteomics identified several differentially expressed proteins in fibroblasts and platelets from AHC cases that are predicted to have an important role in cell function and maintenance, a pathway typically attributed to lysosomes. The lysosomal protein cathepsin was found to be differentially expressed in both platelets and fibroblasts of AHC patients, inducing a stronger activation of mainly the intrinsic apoptosis. Despite the precise mechanism for the increased lysosomal cathepsin B-dependent apoptosis detected in AHC in relation to impaired ATP1A3 deserves further studies, we could here show some evidence for a defective regulation of apoptosis in AHC, a disease that still has no biochemical or neuroradiological parameters for diagnosis.


Assuntos
Plaquetas/metabolismo , Catepsina B/metabolismo , Hemiplegia/genética , ATPase Trocadora de Sódio-Potássio/genética , Apoptose/genética , Catepsina B/genética , Eletroforese em Gel Bidimensional , Feminino , Fibroblastos/metabolismo , Hemiplegia/metabolismo , Hemiplegia/patologia , Humanos , Lactente , Recém-Nascido , Lisossomos/enzimologia , Masculino , Transcriptoma
5.
Genet Med ; 15(1): 55-63, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22899094

RESUMO

PURPOSE: Aquaporin 7 (AQP7) belongs to the aquaglyceroporin family, which transports glycerol and water. AQP7-deficient mice develop obesity, insulin resistance, and hyperglyceroluria. However, AQP7's pathophysiologic role in humans is not yet known. METHODS: Three children with psychomotor retardation and hyperglyceroluria were screened for AQP7 mutations. The children were from unrelated families. Urine and plasma glycerol levels were measured using a three-step enzymatic approach. Platelet morphology and function were studied using electron microscopy, aggregations, and adenosine triphosphate (ATP) secretion tests. RESULTS: The index patients were homozygous for AQP7 G264V, which has previously been shown to inhibit transport of glycerol in Xenopus oocytes. We also detected a subclinical platelet secretion defect with reduced ATP secretion, and the absence of a secondary aggregation wave after epinephrine stimulation. Electron microscopy revealed round platelets with centrally located granules. Immunostaining showed AQP7 colocalization, with dense granules that seemed to be released after strong platelet activation. Healthy relatives of these patients, who were homozygous (not heterozygous) for G264V, also had hyperglyceroluria and platelet granule abnormalities. CONCLUSION: The discovery of an association between urine glycerol loss and a platelet secretion defect is a novel one, and our findings imply the involvement of AQPs in platelet secretion. Additional studies are needed to define whether AQP7 G264V is also a risk factor for mental disability.


Assuntos
Aquaporinas/genética , Transtornos Plaquetários/genética , Homozigoto , Mutação , Adolescente , Adulto , Substituição de Aminoácidos , Aquaporina 3/genética , Aquaporinas/metabolismo , Plaquetas/metabolismo , Plaquetas/ultraestrutura , Criança , Pré-Escolar , Códon , Feminino , Glicerol/sangue , Glicerol/urina , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Linhagem , Transporte Proteico , Adulto Jovem
6.
Blood ; 119(17): 4056-65, 2012 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-22371881

RESUMO

Because single nucleotide polymorphisms (SNPs) in platelet endothelial aggregation receptor 1 (PEAR1) are associated with differential functional platelet responses in healthy subjects, we studied the function of PEAR1 in human platelets. During platelet aggregation by various agonists, the membrane expression of PEAR1 and its tyrosine phosphorylation increased. The recombinant PEAR1 EMI domain (GST-EMI) competitively reduced platelet adhesion to surface-coated PEAR1, diminished platelet aggregation, and eliminated PEAR1 phosphorylation. Polyclonal antibodies against the extracellular PEAR1 domain triggered PEAR1 phosphorylation in a src family kinase (SFK)-dependent manner. Such resulted in downstream signaling, culminating in extensive platelet degranulation and irreversible aggregation reactions interrupted by excess monovalent anti-GST-EMI F(ab) fragments. In resting platelets, the cytoplasmic tail of PEAR1 was found complexed to c-Src and Fyn, but on its phosphorylation, phospho-PEAR1 recruited p85 PI3K, resulting in persistent activation of PI3K and Akt. Thus, αIIbß3 activation was amplified, hence stabilizing platelet aggregates, a signaling cascade fully interrupted by the SFK inhibitor PP1 and the PI3K inhibitor LY294002. This study is the first demonstration of a functional role for PEAR1 in platelet activation, underpinning the observed association between PEAR1 and platelet function in genome-wide association studies.


Assuntos
Plaquetas/metabolismo , Agregação Plaquetária/fisiologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Receptores de Superfície Celular/metabolismo , Quinases da Família src/metabolismo , Western Blotting , Comunicação Celular , Citometria de Fluxo , Imunofluorescência , Estudo de Associação Genômica Ampla , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Ativação Plaquetária , Receptores de Superfície Celular/genética , Transdução de Sinais , Tirosina/metabolismo
7.
Platelets ; 23(2): 91-105, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21736419

RESUMO

Smoking accelerates atherosclerosis and is a well-known risk factor for acute cardiovascular complications; however, the mechanisms of these effects have not been completely clarified. Recently developed proteomic approaches may offer new clues when combined with well-established functional tests. Platelet proteome of healthy smokers and non-smokers was resolved by two-dimensional difference gel electrophoresis, compared by Decyder software and identified by mass spectrometry analysis (nano-LC-MS/MS). In smokers, three proteins (Factor XIII-A subunit, platelet glycoprotein IIb and beta-actin) were significantly up-regulated, whereas WDR1 protein and chaperonine HSP60 were down-regulated. Furthermore, the highest scored network derived by Ingenuity Pathway Analysis using the modulated proteins as input showed the involvement of several proteins to be related to inflammation and apoptosis. Platelet function tests and the levels of markers of platelet and leukocyte activation were not different in smokers vs. non-smoker subjects. The platelet proteomic approach confirms that cigarette smoking triggers several inflammatory reactions and may help clarify some of the molecular mechanisms of smoke effect on cellular systems relevant for vascular integrity and human health.


Assuntos
Proteoma/metabolismo , Fumar/sangue , Adulto , Comunicação Celular/fisiologia , Feminino , Humanos , Leucócitos/citologia , Masculino , Pessoa de Meia-Idade , Proteômica/métodos
8.
Mol Cell Proteomics ; 11(1): M111.007625, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21972247

RESUMO

We previously showed that the Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and its receptor VPAC1 are negative regulators of megakaryopoiesis and platelet function, but their downstream signaling pathway that inhibits this process still remained unknown. A combined proteomic, transcriptomic, and bioinformatic approach was here used to elucidate the molecular mechanisms underlying PACAP signaling via VPAC1 in megakaryocytes. Two-dimensional difference gel electrophoresis and tandem MS were applied to detect differentially expressed proteins in megakaryocytic CHRF cells stimulated with PACAP. The majority of the 120 proteins modulated by PACAP belong to the class of "cell cycle and apoptosis" proteins. The up- or down-regulated expression of some proteins was confirmed by immunoblot and immunohistochemical analysis. A meta-analysis of our data and 12 other published studies was performed to evaluate signaling pathways involved in different cellular models of PACAP response. From 2384 differentially expressed genes/proteins, 83 were modulated by PACAP in at least three independent studies and Ingenuity Pathway Analysis further identified apoptosis as the highest scored network with NF-κB as a key-player. PACAP inhibited serum depletion-induced apoptosis of CHRF cells via VPAC1 stimulation. In addition, PACAP switched on NF-κB dependent gene expression since higher nuclear levels of the active NF-κB p50/p65 heterodimer were found in CHRF cells treated with PACAP. Finally, a quantitative real time PCR apoptosis array was used to study RNA from in vitro differentiated megakaryocytes from a PACAP overexpressing patient, leading to the identification of 15 apoptotic genes with a 4-fold change in expression and Ingenuity Pathway Analysis again revealed NF-κB as the central player. In conclusion, our findings suggest that PACAP interferes with the regulation of apoptosis in megakaryocytes, probably via stimulation of the NF-κB pathway.


Assuntos
Apoptose/efeitos dos fármacos , Megacariócitos/efeitos dos fármacos , NF-kappa B/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Adulto , Linhagem Celular , AMP Cíclico/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Masculino , Megacariócitos/metabolismo , Proteômica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
Int J Oncol ; 37(2): 445-54, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20596672

RESUMO

Ovarian cancer is the second most frequently diagnosed malignancy of the reproductive system and is the leading cause of gynecological cancer mortality. Although the majority of advanced ovarian carcinomas initially respond successfully to taxane-based chemotherapy, resistance to chemotherapy remains the primary factor accounting for the low 5-year survival in this patient population. Recent data obtained by our group demonstrate that the disulphide isomerase ERp57 is strongly modulated in paclitaxel resistance suggesting that it may represent a chemoresistance biomarker in ovarian cancer. In the present study, we characterise a nuclear multimeric complex where ERp57 is associated with protein species involved in cell division and gene expression, as Nucleolin, Nucleophosmin, Vimentin, Aurora kinase C and beta-actin. In particular, we show that the occurrence of the interaction of nuclear ERp57 with beta-actin is associated with paclitaxel resistance and that specific actin conformations modulate this complex. We propose the involvement of the nuclear ERp57 complex in mechanisms associated with chromosome segregation in which specific conformational states of actin play a role in the pathway involved in paclitaxel resistance.


Assuntos
Actinas/química , Resistencia a Medicamentos Antineoplásicos , Complexos Multiproteicos/análise , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Ovarianas/metabolismo , Paclitaxel/farmacologia , Isomerases de Dissulfetos de Proteínas/metabolismo , Actinas/metabolismo , Actinas/fisiologia , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Segregação de Cromossomos/efeitos dos fármacos , Segregação de Cromossomos/fisiologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Humanos , Complexos Multiproteicos/isolamento & purificação , Complexos Multiproteicos/metabolismo , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/patologia , Ligação Proteica , Conformação Proteica , Multimerização Proteica/fisiologia , Relação Estrutura-Atividade
10.
J Proteomics ; 73(7): 1355-67, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20227539

RESUMO

A growing body of literature defines MALDI-TOF MS as a technique for studying plasma and serum, thus enabling the detection of proteins, and the generation of reproducible protein profile mass spectra, potentially able to discriminate correctly different biological systems. In this work, the different steps of the pre-analytical phase that may affect the reproducibility of plasma proteome analysis have been carefully considered. The results showed that the method is highly accurate (9.1%) and precise (8.9%) and the calibration curve for the ACTH (18-39), in human plasma, gave a good correlation coefficient (r>0.99 and r(2)>0.98). The limit of detection (LOD) and the limit of quantification (LOQ), relative intensity, were of 0.5 x 10(-)(9)M and 1.0 x 10(-)(9)M respectively. Thus, an assay has been developed for the detection of low-abundant and low molecular weight proteins, from human plasma, aiming at the identification of new potential biomarkers. The method was tested on plasma from patients with a first diagnosis of pelvic mass. Statistical analysis of plasma profile generated a sub-profile of 17 peptides with their relative abundance able to discriminate patients bearing malignant or benign tumors. The sensitivity and specificity were 85.7% and 80.0% respectively.


Assuntos
Análise Química do Sangue/métodos , Mapeamento de Peptídeos/métodos , Peptídeos/sangue , Proteoma/análise , Manejo de Espécimes/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Análise Química do Sangue/normas , Fracionamento Químico/métodos , Humanos , Mapeamento de Peptídeos/normas , Transição de Fase , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Manejo de Espécimes/normas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/normas , Estados Unidos
11.
J Proteomics ; 73(5): 879-98, 2010 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-19951750

RESUMO

Glycosylation, one of the most common post translational modifications (PTMs) of proteins, is often associated with carcinogenesis and tumor malignancy. Ovarian cancer is the sixth cause of cancer-related death in Western countries. Currently, it is treated by debulking surgery followed by chemotherapy based on paclitaxel, alone or in combination with other drugs. However, chemoresistance represents a major obstacle to positive clinical outcome. We used two approaches, Multiplexed Proteomics (MP) technology and Multilectin Affinity Chromatography (MAC) to characterize the glycoproteome of the human ovarian cancer cell line A2780 and its paclitaxel resistant counterpart A2780TC1. Furthermore proteins were separated by traditional 2DE or DIGE and identified by MS (MALDI TOF or LC MS/MS). Seventy glycoproteins were successfully identified in ovarian cancer cells and 10 were found to be differentially expressed between sensitive and resistant cell lines. We focused on four glycoproteins (tumor rejection antigen (gp96) 1, triose phosphate isomerase, palmitoyl-protein thioesterase 1 precursor and ER-associated DNAJ) which were remarkably upregulated in A2780TC1 compared to A2780 cell line and which may represent biomarkers for paclitaxel resistance in ovarian cancer.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Glicoproteínas/análise , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/farmacologia , Proteômica/métodos , Biomarcadores , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Glicoproteínas/genética , Proteínas de Choque Térmico HSP40/genética , Humanos , Glicoproteínas de Membrana/genética , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Tioléster Hidrolases/genética , Triose-Fosfato Isomerase/genética , Regulação para Cima
12.
J Proteome Res ; 8(4): 1902-12, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19714814

RESUMO

Epithelial ovarian cancer is the leading cause of gynecological cancer mortality. Despite good response to surgery and initial chemotherapy, chemoresistance occurrence represents a major obstacle to a successful therapy. To better understand biological mechanisms at the basis of paclitaxel resistance, a comparative proteomic approach based on DIGE coupled with mass spectrometry (MALDI-TOF and LC-MS/MS) was applied to the human epithelial ovarian cancer cell lines A2780 and its paclitaxel resistant counterpart A2780TC1. Most of the differentially expressed proteins between the two cell lines belong to the class of stress response (29%), metabolism (21%), and cell cycle and apoptosis (17%). We focused on proteins which were most strongly modulated by paclitaxel resistance and in particular on the disulphide isomerase ERp57, which may represent a chemoresistance biomarker. ERp57 was found to interact with class III beta-tubulin (TUBB3), involved in paclitaxel resistance in ovarian and other cancers. Moreover, we demonstrated a novel localization of this protein in cytoskeleton and described that ERp57/TUBB3 interaction occurs also in the nuclear compartment and in association with a multimeric complex formed by nucleolin, nucleophosmin, hnRNPK, and mortalin. Our data suggest that ERp57 plays an important role in chemoresistance mechanisms in ovarian cancer by modulating the attachment of microtubules to chromosomes following paclitaxel treatment through its interaction with TUBB3.


Assuntos
Neoplasias Ovarianas/metabolismo , Paclitaxel/farmacologia , Isomerases de Dissulfetos de Proteínas/fisiologia , Proteoma/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/fisiologia , Eletroforese em Gel Bidimensional , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Humanos , Espectrometria de Massas , Neoplasias Ovarianas/tratamento farmacológico , Ligação Proteica , Tubulina (Proteína)/metabolismo
13.
Biochim Biophys Acta ; 1794(2): 225-36, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18973835

RESUMO

Ovarian cancer is the leading cause of gynaecological cancer mortality. Paclitaxel is used in the first line treatment of ovarian cancer, but acquired resistance represents the most important clinical problem and a major obstacle to a successful therapy. Several mechanisms have been implicated in paclitaxel resistance, however this process has not yet been fully explained. To better understand molecular resistance mechanisms, a comparative proteomic approach was undertaken on the human epithelial ovarian cancer cell lines A2780 (paclitaxel sensitive), A2780TC1 and OVCAR3 (acquired and inherently resistant). Proteins associated with chemoresistance process were identified by DIGE coupled with mass spectrometry (MALDI-TOF and LC-MS/MS). Out of the 172 differentially expressed proteins in pairwise comparisons among the three cell lines, 151 were identified and grouped into ten main functional classes. Most of the proteins were related to the category of stress response (24%), metabolism (22%), protein biosynthesis (15%) and cell cycle and apoptosis (11%), suggesting that alterations of those processes might be involved in paclitaxel resistance mechanisms. This is the first direct proteomic comparison of paclitaxel sensitive and resistant ovarian cancer cells and may be useful for further studies of resistance mechanisms and screening of resistance biomarkers for the development of tailored therapeutic strategies.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas/metabolismo , Paclitaxel/farmacologia , Proteoma/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
14.
Mol Cancer Ther ; 7(7): 2070-9, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18645017

RESUMO

Class III beta-tubulin (TUBB3) has been discovered as a marker of drug resistance in human cancer. To get insights into the mechanisms by which this protein is involved in drug resistance, we analyzed TUBB3 in a panel of drug-sensitive and drug-resistant cell lines. We identified two main different isoforms of TUBB3 having a specific electrophoretic profile. We showed that the apparently higher molecular weight isoform is glycosylated and phosphorylated and it is localized in the cytoskeleton. The apparently lower molecular weight isoform is instead found exclusively in mitochondria. We observed that levels of phosphorylation and glycosylation of TUBB3 are associated with the resistant phenotype and compartmentalization into cytoskeleton. By two-dimensional nonreduced/reduced SDS-PAGE analysis, we also found that TUBB3 protein in vivo forms protein complexes through intermolecular disulfide bridges. Through TUBB3 immunoprecipitation, we isolated protein species able to interact with TUBB3. Following trypsin digestion, these proteins were characterized by mass spectrometry analysis. Functional analysis revealed that these proteins are involved in adaptation to oxidative stress and glucose deprivation, thereby suggesting that TUBB3 is a survival factor able to directly contribute to drug resistance. Moreover, glycosylation of TUBB3 could represent an attractive pathway whose inhibition could hamper cytoskeletal compartmentalization and TUBB3 function.


Assuntos
Citoesqueleto/metabolismo , Mitocôndrias/metabolismo , Proteômica , Tubulina (Proteína)/metabolismo , Processamento Alternativo/efeitos dos fármacos , Processamento Alternativo/genética , Androstadienos/farmacologia , Linhagem Celular Tumoral , Citoesqueleto/efeitos dos fármacos , Eletroforese , Glicosilação/efeitos dos fármacos , Humanos , Immunoblotting , Mitocôndrias/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Tunicamicina/farmacologia , Wortmanina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA