Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 2(9): pgad282, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37731949

RESUMO

COVID-19 has represented an issue for global health since its outbreak in March 2020. It is now evident that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection results in a wide range of long-term neurological symptoms and is worryingly associated with the aggravation of Alzheimer's disease. Little is known about the molecular basis of these manifestations. Here, several strain variants were used to infect SH-SY5Y neuroblastoma cells and K18-hACE C57BL/6J mice. The Tau phosphorylation profile and aggregation propensity upon infection were investigated on cellular extracts, subcellular fractions, and brain tissue. The viral proteins spike, nucleocapsid, and membrane were overexpressed in SH-SY5Y cells, and the direct interaction and effect on Tau phosphorylation were checked using immunoblot experiments. Upon infection, Tau is phosphorylated at several pathological epitopes associated with Alzheimer's disease and other tauopathies. Moreover, this event increases Tau's propensity to form insoluble aggregates and alters its subcellular localization. Our data support the hypothesis that SARS-CoV-2 infection in the central nervous system triggers downstream effects altering Tau function, eventually leading to the impairment of neuronal function.

2.
J Mol Biol ; 431(4): 873-884, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30664870

RESUMO

Tau displacement from microtubules is the first step in the onset of tauopathies and is followed by toxic protein aggregation. However, other non-canonical functions of Tau might have a role in these pathologies. Here, we demonstrate that a small amount of Tau localizes in the nuclear compartment and accumulates in both the soluble and chromatin-bound fractions. We show that favoring Tau nuclear translocation and accumulation, by Tau overexpression or detachment from MTs, increases the expression of VGluT1, a disease-relevant gene directly involved in glutamatergic synaptic transmission. Remarkably, the P301L mutation, related to frontotemporal dementia FTDP-17, impairs this mechanism leading to a loss of function. Altogether, our results provide the demonstration of a direct physiological role of Tau on gene expression. Alterations of this mechanism may be at the basis of the onset of neurodegeneration.


Assuntos
Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteínas tau/genética , Linhagem Celular , Linhagem Celular Tumoral , Cromatina/genética , Expressão Gênica/genética , Células HeLa , Humanos , Microtúbulos/genética , Mutação/genética , Tauopatias/genética
3.
J Vis Exp ; (154)2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31904014

RESUMO

Tau is a microtubule binding protein expressed in neurons and its main known function is related to the maintenance of cytoskeletal stability. However, recent evidence indicated that Tau is present also in other subcellular compartments including the nucleus where it is implicated in DNA protection, in rRNA transcription, in the mobility of retrotransposons and in the structural organization of the nucleolus. We have recently demonstrated that nuclear Tau is involved in the expression of the VGluT1 gene, suggesting a molecular mechanism that could explain the pathological increase of glutamate release in the early stages of Alzheimer's disease. Until recently, the involvement of nuclear Tau in modulating the expression of target genes has been relatively uncertain and ambiguous due to technical limitations that prevented the exclusion of the contribution of cytoplasmic Tau or the effect of other downstream factors not related to nuclear Tau. To overcome this uncertainty, we developed a method to study the expression of target genes specifically modulated by the nuclear Tau protein. We employed a protocol that couples the use of localization signals and the subcellular fractionation, allowing the exclusion of the interference from the cytoplasmic Tau molecules. Most notably, the protocol is easy and is composed of classic and reliable methods that are broadly applicable to study the nuclear function of Tau in other cell types and cellular conditions.


Assuntos
Doença de Alzheimer/genética , Regulação da Expressão Gênica , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Humanos , Neurônios/metabolismo , Frações Subcelulares , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
4.
J Virol ; 90(10): 5205-5209, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26962222

RESUMO

Recent advances in fluorescence microscopy allow three-dimensional analysis of HIV-1 preintegration complexes in the nuclei of infected cells. To extend this investigation to gammaretroviruses, we engineered a fluorescent Moloney murine leukemia virus (MLV) system consisting of MLV-integrase fused to enhanced green fluorescent protein (MLV-IN-EGFP). A comparative analysis of lentiviral (HIV-1) and gammaretroviral (MLV) fluorescent complexes in the nuclei of infected cells revealed their different spatial distributions. This research tool has the potential to achieve new insight into the nuclear biology of these retroviruses.


Assuntos
Núcleo Celular/ultraestrutura , Núcleo Celular/virologia , HIV-1/fisiologia , Vírus da Leucemia Murina de Moloney/fisiologia , Animais , Proteínas de Fluorescência Verde/genética , HIV-1/genética , HIV-1/ultraestrutura , Células HeLa , Humanos , Integrases/genética , Camundongos , Microscopia de Fluorescência , Vírus da Leucemia Murina de Moloney/ultraestrutura , Integração Viral
5.
AIDS Res Hum Retroviruses ; 30(7): 717-26, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24798748

RESUMO

The ability to visualize fluorescent HIV-1 particles within the nuclei of infected cells represents an attractive tool to study the nuclear biology of the virus. To this aim we recently developed a microscopy-based fluorescent system (HIV-IN-EGFP) that has proven valid to efficiently visualize HIV-1 complexes in the nuclear compartment and to examine the nuclear import efficiency of the virus. The power of this method to investigate viral events occurring between the cytoplasmic and the nuclear compartment is further shown in this study through the analysis of HIV-IN-EGFP in cells expressing the TRIMCyp restriction factor. In these cells the HIV-IN-EGFP complexes are not detected in the nuclear compartment, while treatment with MG132 reveals an accumulation of HIV-1 complexes in the cytoplasm. However, the Vpr-mediated transincorporation strategy used to incorporate IN fused to EGFP (IN-EGFP) impaired viral infectivity. To optimize the infectivity of the HIV-IN-EGFP, we used mutated forms of IN (E11K and K186E) known to stabilize the IN complexes and to partially restore viral infectivity in transcomplementation experiments. The fluorescent particles produced with the modified IN [HIV-IN(K)EGFP_IN(E)] show almost 30% infectivity as compared to wild-type NL4.3. Detailed confocal microscopy analysis revealed that the newly generated viral particles resulted in HIV-1 complexes significantly smaller in size, thus requiring the use of brighter fluorophores for nuclear visualization [HIV-IN(K)sfGFP_IN(E)]. The second-generation visualization system HIV-IN(K)sfGFP_IN(E), in addition to allowing direct visualization of HIV-1 nuclear entry and other viral events related to nuclear import, preserves intact viral properties in terms of nuclear entry and improved infectivity.


Assuntos
Núcleo Celular/virologia , Infecções por HIV/genética , HIV-1/fisiologia , Internalização do Vírus , Linhagem Celular Tumoral , Corantes Fluorescentes/análise , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Células HEK293 , Infecções por HIV/virologia , HIV-1/genética , Células HeLa , Humanos , Microscopia de Fluorescência/métodos , Integração Viral/genética , Replicação Viral/genética
6.
Proc Natl Acad Sci U S A ; 110(14): 5636-41, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23513220

RESUMO

Recent advances in fluorescence microscopy provided tools for the investigation and the analysis of the viral replication steps in the cellular context. In the HIV field, the current visualization systems successfully achieve the fluorescent labeling of the viral envelope and proteins, but not the genome. Here, we developed a system able to visualize the proviral DNA of HIV-1 through immunofluorescence detection of repair foci for DNA double-strand breaks specifically induced in the viral genome by the heterologous expression of the I-SceI endonuclease. The system for Single-Cell Imaging of HIV-1 Provirus, named SCIP, provides the possibility to individually track integrated-viral DNA within the nuclei of infected cells. In particular, SCIP allowed us to perform a topological analysis of integrated viral DNA revealing that HIV-1 preferentially integrates in the chromatin localized at the periphery of the nuclei.


Assuntos
HIV-1/ultraestrutura , Microscopia de Fluorescência/métodos , Provírus/ultraestrutura , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Quebras de DNA de Cadeia Dupla , Primers do DNA/genética , Reparo do DNA/genética , Desoxirribonucleases de Sítio Específico do Tipo II , Humanos , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Proteínas de Saccharomyces cerevisiae , Análise de Célula Única/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA