Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(8)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39202455

RESUMO

Hypoxic-ischemic brain damage presents a significant neurological challenge, often manifesting during the perinatal period. Specifically, periventricular leukomalacia (PVL) is emerging as a notable contributor to cerebral palsy and intellectual disabilities. It compromises cerebral microcirculation, resulting in insufficient oxygen or blood flow to the periventricular region of the brain. As widely documented, these pathological conditions can be caused by several factors encompassing preterm birth (4-5% of the total cases), as well single cotwin abortion and genetic variants such as those associated with GTPase pathways. Whole exome sequencing (WES) analysis identified a de novo causative variant within the pleckstrin homology domain-containing family G member 1 (PLEKHG1) gene in a patient presenting with PVL. The PLEKHG1 gene is ubiquitously expressed, showing high expression patterns in brain tissues. PLEKHG1 is part of a family of Rho guanine nucleotide exchange factors, and the protein is essential for cell division control protein 42 (CDC42) activation in the GTPase pathway. CDC42 is a key small GTPase of the Rho-subfamily, regulating various cellular functions such as cell morphology, migration, endocytosis, and cell cycle progression. The molecular mechanism involving PLEKHG1 and CDC42 has an intriguing role in the reorientation of cells in the vascular endothelium, thus suggesting that disruption responses to mechanical stress in endothelial cells may be involved in the formation of white matter lesions. Significantly, CDC42 association with white matter abnormalities is underscored by its MIM phenotype number. In contrast, although PLEKHG1 has been recently associated with patients showing white matter hyperintensities, it currently lacks a MIM phenotype number. Additionally, in silico analyses classified the identified variant as pathogenic. Although the patient was born prematurely and subsequently to dichorionic gestation, during which its cotwin died, we suggest that the variant described can strongly contribute to PVL. The aim of the current study is to establish a plausible association between the PLEKHG1 gene and PVL.


Assuntos
Leucomalácia Periventricular , Humanos , Leucomalácia Periventricular/genética , Leucomalácia Periventricular/patologia , Recém-Nascido , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Feminino , Substância Branca/patologia , Substância Branca/metabolismo , Sequenciamento do Exoma , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Masculino
2.
Epilepsy Behav ; 153: 109719, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428176

RESUMO

Status gelasticus is a rare form of status epilepticus characterized by prolonged and/or clustered gelastic seizures. The review encompasses an analysis of cases reported in the literature, focusing on causes, clinical-electroencephalographic features, and therapeutic interventions. The study reveals the challenges in defining and understanding status gelasticus due to its diverse etiologies and limited reported cases. The association with hypothalamic hamartomas and other brain abnormalities underscores the importance of thorough evaluations. The review also discusses new treatments, including medications and less invasive surgeries. While progress has been made, the study points out challenges in diagnosing and managing this complex condition, highlighting the importance of ongoing research.


Assuntos
Encefalopatias , Epilepsias Parciais , Hamartoma , Doenças Hipotalâmicas , Estado Epiléptico , Humanos , Epilepsias Parciais/diagnóstico , Doenças Hipotalâmicas/complicações , Encefalopatias/complicações , Encéfalo , Estado Epiléptico/complicações , Hamartoma/complicações , Imageamento por Ressonância Magnética
3.
Genes (Basel) ; 14(12)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38136934

RESUMO

Cardiofaciocutaneous (CFC) syndrome is one of the rarest RASopathies characterized by multiple congenital ectodermal, cardiac and craniofacial abnormalities with a mild to severe ocular, gastrointestinal and neurological involvement. It is an autosomal dominant syndrome, with complete penetrance, caused by heterozygous pathogenic variants in the genes BRAF, MAP2K1/MEK1, MAP2K2/MEK2, KRAS or, rarely, YWHAZ, all part of the RAS-MAPK pathway. This pathway is a signal transduction cascade that plays a crucial role in normal cellular processes such as cell growth, proliferation, differentiation, survival, metabolism and migration. CFC syndrome overlaps with Noonan syndrome, Costello syndrome, neurofibromatosis type 1 and Legius syndrome, therefore making the diagnosis challenging. Neurological involvement in CFC is more severe than in other RASopathies. Phenotypic variability in CFC patients is related to the specific gene affected, without a recognized genotype-phenotype correlation for distinct pathogenic variants. Currently, there is no specific treatment for CFC syndrome. Encouraging zebrafish model system studies suggested that, in the future, MEK inhibitors could be a suitable treatment of progressive phenotypes of CFC in children. A multidisciplinary care is necessary for appropriate medical management.


Assuntos
Displasia Ectodérmica , Cardiopatias Congênitas , Criança , Animais , Humanos , Prognóstico , Peixe-Zebra/genética , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Displasia Ectodérmica/terapia , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/terapia , Cardiopatias Congênitas/diagnóstico
4.
Pediatr Neurol ; 149: 84-92, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37820543

RESUMO

BACKGROUND: P-21-activated kinases (PAKs) are protein serine/threonine kinases, part of the RAS/mitogen-activated protein kinase pathway. PAK1 is highly expressed in the central nervous system and crucially involved in neuronal migration and brain developmental processes. Recently, de novo heterozygous missense variants in PAK1 have been identified as an ultrarare cause of pediatric neurodevelopmental disorders. METHODS: We report a series of children affected with postnatal macrocephaly, neurodevelopmental impairment, and drug-resistant epilepsy. Repeated electroencephalographic (EEG) and video-EEG evaluations were performed over a two- to 10-year period during follow-up to delineate electroclinical histories. Genetic sequencing studies and computational evaluation of the identified variants were performed in our patient cohort. RESULTS: We identified by whole-exome sequencing three novel de novo variants in PAK1 (NM_001128620: c.427A>G, p.Met143Val; c.428T>C, p.Met143Thr; c.428T>A, p.Met143Lys) as the underlying cause of the disease in our families. The three variants affected the same highly conserved Met143 residue within the cysteine-rich inhibitor of PAK1 (CRIPaK) domain, which was identified before as a PAK1 inhibitor target. Computational studies suggested a defective autoinhibition presumably due to impaired PAK1 autoregulation as a result of the recurrent substitution. CONCLUSIONS: We delineated the electroclinical phenotypes of PAK1-related neurological disorders and highlight a novel mutational hotspot that may involve defective autoinhibition of the PAK1 protein. The three novel variants affecting the same hotspot residue within the CRIPaK domain highlight potentially impaired PAK1-CRIPaK interaction as a novel disease mechanism. These findings shed light on possible future treatments targeted at the CRIPaK domain, to modulate PAK1 activity and function.


Assuntos
Transtornos do Neurodesenvolvimento , Quinases Ativadas por p21 , Criança , Humanos , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/química , Quinases Ativadas por p21/metabolismo , Proteínas Serina-Treonina Quinases/genética , Mutação/genética , Transtornos do Neurodesenvolvimento/genética , Mutação de Sentido Incorreto
5.
Brain Dev ; 45(10): 588-596, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37633739

RESUMO

BACKGROUND: ATP6V1B2 (ATPase, H+ transporting, lysosomal VI subunit B, isoform 2) encodes for a subunit of a ubiquitous transmembrane lysosomal proton pump, implicated in the acidification of intracellular organelles and in several additional cellular functions. Variants in ATP6V1B2 have been related to a heterogeneous group of multisystemic disorders sometimes associated with variable neurological involvement. However, our knowledge of genotype-phenotype correlations and the neurological spectrum of ATP6V1B2-related disorders remain limited due to the few numbers of reported cases. CASE STUDY: We hereby report the case of an 18-year-old male Sicilian patient affected by a global developmental delay, skeletal abnormalities, and epileptic encephalopathy featuring Lennox-Gastaut syndrome (LGS), in which exome sequencing led to the identification of a novel de novo variant in ATP6V1B2 (NM_001693.4: c.973G > C, p.Gly325Arg). CONCLUSIONS: Our report provides new insights on the inclusion of developmental epileptic encephalopathies (DEEs) within the continuum group of ATP6V1B2-related disorders, expanding the phenotypic and molecular spectrum associated with these conditions.


Assuntos
Epilepsia Generalizada , Epilepsia , Síndrome de Lennox-Gastaut , ATPases Vacuolares Próton-Translocadoras , Masculino , Humanos , Adolescente , Síndrome de Lennox-Gastaut/genética , Epilepsia/genética , Estudos de Associação Genética , Adenosina Trifosfatases , ATPases Vacuolares Próton-Translocadoras/genética
6.
Nat Commun ; 14(1): 4109, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433783

RESUMO

Genetic variants in chromatin regulators are frequently found in neurodevelopmental disorders, but their effect in disease etiology is rarely determined. Here, we uncover and functionally define pathogenic variants in the chromatin modifier EZH1 as the cause of dominant and recessive neurodevelopmental disorders in 19 individuals. EZH1 encodes one of the two alternative histone H3 lysine 27 methyltransferases of the PRC2 complex. Unlike the other PRC2 subunits, which are involved in cancers and developmental syndromes, the implication of EZH1 in human development and disease is largely unknown. Using cellular and biochemical studies, we demonstrate that recessive variants impair EZH1 expression causing loss of function effects, while dominant variants are missense mutations that affect evolutionarily conserved aminoacids, likely impacting EZH1 structure or function. Accordingly, we found increased methyltransferase activity leading to gain of function of two EZH1 missense variants. Furthermore, we show that EZH1 is necessary and sufficient for differentiation of neural progenitor cells in the developing chick embryo neural tube. Finally, using human pluripotent stem cell-derived neural cultures and forebrain organoids, we demonstrate that EZH1 variants perturb cortical neuron differentiation. Overall, our work reveals a critical role of EZH1 in neurogenesis regulation and provides molecular diagnosis for previously undefined neurodevelopmental disorders.


Assuntos
Transtornos do Neurodesenvolvimento , Neurogênese , Complexo Repressor Polycomb 2 , Animais , Embrião de Galinha , Humanos , Diferenciação Celular/genética , Núcleo Celular , Cromatina/genética , Metiltransferases , Transtornos do Neurodesenvolvimento/genética , Neurogênese/genética , Complexo Repressor Polycomb 2/genética
7.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108250

RESUMO

Neurotrophins (NTs) are a group of soluble growth factors with analogous structures and functions, identified initially as critical mediators of neuronal survival during development. Recently, the relevance of NTs has been confirmed by emerging clinical data showing that impaired NTs levels and functions are involved in the onset of neurological and pulmonary diseases. The alteration in NTs expression at the central and peripheral nervous system has been linked to neurodevelopmental disorders with an early onset and severe clinical manifestations, often named "synaptopathies" because of structural and functional synaptic plasticity abnormalities. NTs appear to be also involved in the physiology and pathophysiology of several airway diseases, neonatal lung diseases, allergic and inflammatory diseases, lung fibrosis, and even lung cancer. Moreover, they have also been detected in other peripheral tissues, including immune cells, epithelium, smooth muscle, fibroblasts, and vascular endothelium. This review aims to provide a comprehensive description of the NTs as important physiological and pathophysiological players in brain and lung development.


Assuntos
Hipersensibilidade , Fibrose Pulmonar , Recém-Nascido , Humanos , Fatores de Crescimento Neural/metabolismo , Pulmão/metabolismo , Fibrose Pulmonar/metabolismo , Encéfalo/metabolismo
8.
Front Pediatr ; 10: 892445, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35601411

RESUMO

Background: Moyamoya is a rare progressive cerebral arteriopathy, occurring as an isolated phenomenon (moyamoya disease, MMD) or associated with other conditions (moyamoya syndrome, MMS), responsible for 6-10% of all childhood strokes and transient ischemic attacks (TIAs). Methods: We conducted a retrospective multicenter study on pediatric-onset MMD/MMS in Italy in order to characterize disease presentation, course, management, neuroradiology, and outcome in a European country. Results: A total of 65 patients (34/65 women) with MMD (27/65) or MMS (38/65) were included. About 18% (12/65) of patients were asymptomatic and diagnosed incidentally during investigations performed for an underlying condition (incMMS), whereas 82% (53/65) of patients with MMD or MMS were diagnosed due to the presence of neurological symptoms (symptMMD/MMS). Of these latter, before diagnosis, 66% (43/65) of patients suffered from cerebrovascular events with or without other manifestations (ischemic stroke 42%, 27/65; TIA 32%, 21/65; and no hemorrhagic strokes), 18% (12/65) of them reported headache (in 4/12 headache was not associated with any other manifestation), and 26% (17/65) of them experienced multiple phenotypes (≥2 among: stroke/TIA/seizures/headache/others). Neuroradiology disclosed ≥1 ischemic lesion in 67% (39/58) of patients and posterior circulation involvement in 51% (30/58) of them. About 73% (47/64) of patients underwent surgery, and 69% (45/65) of them received aspirin, but after diagnosis, further stroke events occurred in 20% (12/61) of them, including operated patients (11%, 5/47). Between symptom onset and last follow-up, the overall patient/year incidence of stroke was 10.26% (IC 95% 7.58-13.88%). At last follow-up (median 4 years after diagnosis, range 0.5-15), 43% (26/61) of patients had motor deficits, 31% (19/61) of them had intellectual disability, 13% (8/61) of them had epilepsy, 11% (7/61) of them had behavioral problems, and 25% (13/52) of them had mRS > 2. The proportion of final mRS > 2 was significantly higher in patients with symptMMD/MMS than in patients with incMMS (p = 0.021). Onset age <4 years and stroke before diagnosis were significantly associated with increased risk of intellectual disability (p = 0.0010 and p = 0.0071, respectively) and mRS > 2 at follow-up (p = 0.0106 and p = 0.0009, respectively). Conclusions: Moyamoya is a severe condition that may affect young children and frequently cause cerebrovascular events throughout the disease course, but may also manifest with multiple and non-cerebrovascular clinical phenotypes including headache (isolated or associated with other manifestations), seizures, and movement disorder. Younger onset age and stroke before diagnosis may associate with increased risk of worse outcome (final mRS > 2).

9.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34830385

RESUMO

Premature infants are exposed to increased generation of reactive oxygen species, and on the other hand, they have a deficient antioxidant defense system. Oxidative insult is a salient part of lung injury that begins as acute inflammatory injury in respiratory distress disease and then evolves into chronic and structural scarring leading to bronchopulmonary dysplasia. Oxidative stress is also involved in the pathogenesis of pulmonary hypertension in newborns through the modulation of the vascular tone and the response to pulmonary vasodilators, with consequent decrease in the density of the pulmonary vessels and thickening of the pulmonary arteriolar walls. Oxidative stress has been recognized as both a trigger and an endpoint for several events, including inflammation, hypoxia, hyperoxia, drugs, transfusions, and mechanical ventilation, with impairment of pulmonary function and prolonged lung damage. Redoxomics is the most fascinating new measure to address lung damage due to oxidative stress. The new challenge is to use omics data to discover a set of biomarkers useful in diagnosis, prognosis, and formulating optimal and individualized neonatal care. The aim of this review was to examine the most recent evidence on the relationship between oxidative stress and lung diseases in preterm newborns. What is currently known regarding oxidative stress-related lung injury pathogenesis and the available preventive and therapeutic strategies are also discussed.


Assuntos
Hipertensão Pulmonar/metabolismo , Pulmão/metabolismo , Estresse Oxidativo/genética , Síndrome do Desconforto Respiratório/metabolismo , Humanos , Hipertensão Pulmonar/patologia , Lactente , Recém-Nascido , Recém-Nascido Prematuro/metabolismo , Pulmão/patologia , Nascimento Prematuro/genética , Nascimento Prematuro/metabolismo , Nascimento Prematuro/patologia , Espécies Reativas de Oxigênio/metabolismo , Síndrome do Desconforto Respiratório/patologia
10.
Brain Sci ; 11(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34679357

RESUMO

Antipsychotics (APDs) represent the main pharmacological strategy in the treatment of schizophrenia; however, their administration often may result in severe adverse effects, such as extrapyramidal symptoms. Typically, dystonic movements are considered the result of impaired function and/or abnormalities of dopaminergic neurotransmission/signaling in the basal ganglia. The catechol O-methyltransferase (COMT) gene is located within the 22q11.2 region, and its product is an enzyme involved in transferring a methyl group from S-adenosylmethionine to catecholamines, including dopamine. Studies showed that COMT Val158Met polymorphism modifies enzymatic activity and, consequently, synaptic dopamine concentration in specific brain areas. We identified a patient with 22q11.2 deletion syndrome presenting with cervical and trunk dystonia after paliperidone administration, which persisted even after drug discontinuation. Given the patient's genetic condition, we hypothesized that the dopaminergic dysfunction had been aggravated by COMT involvement, thus causing dystonia. In line with this hypothesis, we carried out a study on psychiatric patients in chronic treatment with APD to evaluate the distribution of the COMT Val158Met polymorphism and its role in the onset of adverse extrapyramidal symptoms. The study included four patients with dystonia after administration of APDs compared to 17 patients who never presented adverse drug reactions. Our data suggest that the Val/Val and Met/Met polymorphisms of the COMT gene are associated with a protective effect for the development of collateral extrapyramidal symptoms in patients treated with APDs, while the Val/Met genotype could be considered a risk factor for the development of dystonia after APDs administration.

11.
Front Neurol ; 12: 659543, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34168609

RESUMO

Epilepsy is a rare clinical manifestation in Williams-Beuren syndrome patients. However, some studies report the presence of infantile spasms and epilepsy in patients carrying larger deletions. Herein, we describe a 13-year-old female affected by Williams-Beuren syndrome and pharmacoresistant epilepsy reporting a de novo large heterozygous 7q11.21q21 deletion (19.4 Mb) also including the YWHAG gene. Studies indicate that cannabidiol is effective as adjunctive therapy for seizures associated with tuberous sclerosis complex, and it is under investigation also in focal cortical dysplasia. When treated with cannabidiol, our patient showed a significant reduction in seizure frequency and intensity, and improved motor and social skills. We hypothesized that CBD could exert a gene/disease-specific effect.

12.
Am J Hum Genet ; 107(6): 1078-1095, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33217308

RESUMO

The myosin-directed chaperone UNC-45B is essential for sarcomeric organization and muscle function from Caenorhabditis elegans to humans. The pathological impact of UNC-45B in muscle disease remained elusive. We report ten individuals with bi-allelic variants in UNC45B who exhibit childhood-onset progressive muscle weakness. We identified a common UNC45B variant that acts as a complex hypomorph splice variant. Purified UNC-45B mutants showed changes in folding and solubility. In situ localization studies further demonstrated reduced expression of mutant UNC-45B in muscle combined with abnormal localization away from the A-band towards the Z-disk of the sarcomere. The physiological relevance of these observations was investigated in C. elegans by transgenic expression of conserved UNC-45 missense variants, which showed impaired myosin binding for one and defective muscle function for three. Together, our results demonstrate that UNC-45B impairment manifests as a chaperonopathy with progressive muscle pathology, which discovers the previously unknown conserved role of UNC-45B in myofibrillar organization.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/fisiologia , Doenças Musculares/genética , Mutação de Sentido Incorreto , Adolescente , Adulto , Alelos , Animais , Caenorhabditis elegans , Feminino , Variação Genética , Humanos , Mutação com Perda de Função , Masculino , Músculo Esquelético/patologia , Miofibrilas , Miosinas , Sarcômeros/metabolismo , Análise de Sequência de RNA , Transgenes , Sequenciamento do Exoma , Adulto Jovem
13.
Brain ; 140(4): 940-952, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334956

RESUMO

PRUNE is a member of the DHH (Asp-His-His) phosphoesterase protein superfamily of molecules important for cell motility, and implicated in cancer progression. Here we investigated multiple families from Oman, India, Iran and Italy with individuals affected by a new autosomal recessive neurodevelopmental and degenerative disorder in which the cardinal features include primary microcephaly and profound global developmental delay. Our genetic studies identified biallelic mutations of PRUNE1 as responsible. Our functional assays of disease-associated variant alleles revealed impaired microtubule polymerization, as well as cell migration and proliferation properties, of mutant PRUNE. Additionally, our studies also highlight a potential new role for PRUNE during microtubule polymerization, which is essential for the cytoskeletal rearrangements that occur during cellular division and proliferation. Together these studies define PRUNE as a molecule fundamental for normal human cortical development and define cellular and clinical consequences associated with PRUNE mutation.


Assuntos
Encéfalo/crescimento & desenvolvimento , Proteínas de Transporte/genética , Deficiências do Desenvolvimento/genética , Microcefalia/genética , Adolescente , Diferenciação Celular/genética , Movimento Celular/genética , Córtex Cerebral/crescimento & desenvolvimento , Criança , Pré-Escolar , Citoesqueleto/genética , Citoesqueleto/ultraestrutura , Feminino , Genes Recessivos , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Humanos , Lactente , Masculino , Microtúbulos/genética , Microtúbulos/ultraestrutura , Mutação/genética , Linhagem , Monoéster Fosfórico Hidrolases , Adulto Jovem
14.
Int J Mol Sci ; 16(1): 378-400, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25548896

RESUMO

Obesity, a social problem worldwide, is characterized by an increase in body weight that results in excessive fat accumulation. Obesity is a major cause of morbidity and mortality and leads to several diseases, including metabolic syndrome, diabetes mellitus, cardiovascular, fatty liver diseases, and cancer. Growing evidence allows us to understand the critical role of adipose tissue in controlling the physic-pathological mechanisms of obesity and related comorbidities. Recently, adipose tissue, especially in the visceral compartment, has been considered not only as a simple energy depository tissue, but also as an active endocrine organ releasing a variety of biologically active molecules known as adipocytokines or adipokines. Based on the complex interplay between adipokines, obesity is also characterized by chronic low grade inflammation with permanently increased oxidative stress (OS). Over-expression of oxidative stress damages cellular structures together with under-production of anti-oxidant mechanisms, leading to the development of obesity-related complications. The aim of this review is to summarize what is known in the relationship between OS in obesity and obesity-related diseases.


Assuntos
Obesidade/complicações , Obesidade/metabolismo , Estresse Oxidativo , Adipocinas/análise , Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Animais , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Neoplasias/complicações , Neoplasias/metabolismo
15.
Int J Endocrinol ; 2014: 282489, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25276129

RESUMO

Various neurological and psychiatric manifestations have been recorded in children with adrenal disorders. Based on literature review and on personal case-studies and case-series we focused on the pathophysiological and clinical implications of glucocorticoid-related, mineralcorticoid-related, and catecholamine-related paediatric nervous system involvement. Childhood Cushing syndrome can be associated with long-lasting cognitive deficits and abnormal behaviour, even after resolution of the hypercortisolism. Exposure to excessive replacement of exogenous glucocorticoids in the paediatric age group (e.g., during treatments for adrenal insufficiency) has been reported with neurological and magnetic resonance imaging (MRI) abnormalities (e.g., delayed myelination and brain atrophy) due to potential corticosteroid-related myelin damage in the developing brain and the possible impairment of limbic system ontogenesis. Idiopathic intracranial hypertension (IIH), a disorder of unclear pathophysiology characterised by increased cerebrospinal fluid (CSF) pressure, has been described in children with hypercortisolism, adrenal insufficiency, and hyperaldosteronism, reflecting the potential underlying involvement of the adrenal-brain axis in the regulation of CSF pressure homeostasis. Arterial hypertension caused by paediatric adenomas or tumours of the adrenal cortex or medulla has been associated with various hypertension-related neurological manifestations. The development and maturation of the central nervous system (CNS) through childhood is tightly regulated by intrinsic, paracrine, endocrine, and external modulators, and perturbations in any of these factors, including those related to adrenal hormone imbalance, could result in consequences that affect the structure and function of the paediatric brain. Animal experiments and clinical studies demonstrated that the developing (i.e., paediatric) CNS seems to be particularly vulnerable to alterations induced by adrenal disorders and/or supraphysiological doses of corticosteroids. Physicians should be aware of potential neurological manifestations in children with adrenal dysfunction to achieve better prevention and timely diagnosis and treatment of these disorders. Further studies are needed to explore the potential neurological, cognitive, and psychiatric long-term consequences of high doses of prolonged corticosteroid administration in childhood.

16.
Eur J Paediatr Neurol ; 10(3): 154-6, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16759889

RESUMO

We detected a novel CLN1 mutation (c.125-15t>g) in two Italian siblings. The clinical phenotype is that of a variant late-infantile neuronal ceroid lipofuscinosis and consisted of early-onset visual loss, psychomotor deterioration, and seizures. Ultrastructurally, granular osmiophilic deposits were found in skin biopsy of both patients. The novel mutation occurs in the acceptor sequences for splicing and leads to skipping of multiple exons. This predicts a protein lacking part or all of the active site of the enzyme and the palmitate-binding pocket. Consequently, biochemical activity of the palmitoyl protein thioesterase-1 enzyme was drastically reduced. The new mutation was not identified in a large set of ethnically matched control chromosomes. Our findings support the notion that CLN1 patients are not rare in Southern Europe and facilitate DNA-based mutation and carrier testing in this family.


Assuntos
Proteínas de Membrana/genética , Mutação/fisiologia , Lipofuscinoses Ceroides Neuronais/genética , Adolescente , Encéfalo/patologia , Criança , Feminino , Humanos , Itália , Imageamento por Ressonância Magnética , Masculino , Doenças Neuromusculares/etiologia , Lipofuscinoses Ceroides Neuronais/patologia , Palmitoil-CoA Hidrolase/deficiência , Palmitoil-CoA Hidrolase/genética , Fenótipo , Convulsões/etiologia , Pele/patologia , Tioléster Hidrolases , Transtornos da Visão/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA