Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Physiol ; 237(9): 3578-3586, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35678366

RESUMO

The insulin signaling pathway controls cell growth and metabolism, thus its deregulation is associated with both cancer and diabetes. Phosphatidylinositol 3-kinase (PI3K) contributes to the cascade of phosphorylation events occurring in the insulin pathway by activating the protein kinase B (PKB/AKT), which phosphorylates several substrates, including those involved in glucose uptake and storage. PI3K inactivating mutations are associated with insulin resistance while activating mutations are identified in human cancers. Here we show that RNAi-induced depletion of the Drosophila PI3K catalytic subunit (Dp110) results in diabetic phenotypes such as hyperglycemia, body size reduction, and decreased glycogen content. Interestingly, we found that hyperglycemia produces chromosome aberrations (CABs) triggered by the accumulation of advanced glycation end-products and reactive oxygen species. Rearing PI3KRNAi flies in a medium supplemented with pyridoxal 5'-phosphate (PLP; the catalytically active form of vitamin B6) rescues DNA damage while, in contrast, treating PI3KRNAi larvae with the PLP inhibitor 4-deoxypyridoxine strongly enhances CAB frequency. Interestingly, PLP supplementation rescues also diabetic phenotypes. Taken together, our results provide a strong link between impaired PI3K activity and genomic instability, a crucial relationship that needs to be monitored not only in diabetes due to impaired insulin signaling but also in cancer therapies based on PI3K inhibitors. In addition, our findings confirm the notion that vitamin B6 is a good natural remedy to counteract insulin resistance and its complications.


Assuntos
Dano ao DNA , Fosfatidilinositol 3-Quinase , Vitamina B 6 , Animais , Dano ao DNA/efeitos dos fármacos , Modelos Animais de Doenças , Drosophila/efeitos dos fármacos , Drosophila/metabolismo , Glucose/farmacologia , Humanos , Hiperglicemia , Insulina/metabolismo , Resistência à Insulina , Fosfatidilinositol 3-Quinase/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfato de Piridoxal/farmacologia , Vitamina B 6/farmacologia
2.
Life (Basel) ; 11(5)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34068845

RESUMO

Cysteine sulfinic acid decarboxylase catalyzes the last step of taurine biosynthesis in mammals, and belongs to the fold type I superfamily of pyridoxal-5'-phosphate (PLP)-dependent enzymes. Taurine (2-aminoethanesulfonic acid) is the most abundant free amino acid in animal tissues; it is highly present in liver, kidney, muscle, and brain, and plays numerous biological and physiological roles. Despite the importance of taurine in human health, human cysteine sulfinic acid decarboxylase has been poorly characterized at the biochemical level, although its three-dimensional structure has been solved. In the present work, we have recombinantly expressed and purified human cysteine sulfinic acid decarboxylase, and applied a simple spectroscopic direct method based on circular dichroism to measure its enzymatic activity. This method gives a significant advantage in terms of simplicity and reduction of execution time with respect to previously used assays, and will facilitate future studies on the catalytic mechanism of the enzyme. We determined the kinetic constants using L-cysteine sulfinic acid as substrate, and also showed that human cysteine sulfinic acid decarboxylase is capable to catalyze the decarboxylation-besides its natural substrates L-cysteine sulfinic acid and L-cysteic acid-of L-aspartate and L-glutamate, although with much lower efficiency.

3.
Biochemistry ; 57(51): 6984-6996, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30500180

RESUMO

Serine hydroxymethyltransferase (SHMT) catalyzes the reversible conversion of l-serine and tetrahydrofolate into glycine and 5,10-methylenetetrahydrofolate. This enzyme, which plays a pivotal role in one-carbon metabolism, is involved in cancer metabolic reprogramming and is a recognized target of chemotherapy intervention. In humans, two isoforms of the enzyme exist, which are commonly termed cytosolic SHMT1 and mitochondrial SHMT2. Considerable attention has been paid to the structural, mechanistic, and metabolic features of these isozymes. On the other hand, a detailed comparison of their catalytic and regulatory properties is missing, although this aspect seems to be considerably important, considering that SHMT1 and SHMT2 reside in different cellular compartments, where they play distinct roles in folate metabolism. Here we performed a full kinetic characterization of the serine hydroxymethyltransferase reaction catalyzed by SHMT1 and SHMT2, with a focus on pH dependence and substrate inhibition. Our investigation, which allowed the determination of all kinetic parameters of serine hydroxymethyltransferase forward and backward reactions, uncovered a previously unobserved substrate inhibition by l-serine and highlighted several interesting differences between SHMT1 and SHMT2. In particular, SHMT2 maintains a pronounced tetrahydrofolate substrate inhibition even at the alkaline pH characteristic of the mitochondrial matrix, whereas with SHMT1 this is almost abolished. At this pH, SHMT2 also shows a catalytic efficiency that is much higher than that of SHMT1. These observations suggest that such different properties represent an adaptation of the isoforms to the respective cellular environments and that substrate inhibition may be a form of regulation.


Assuntos
Glicina Hidroximetiltransferase/metabolismo , Citosol/enzimologia , Glicina/metabolismo , Glicina Hidroximetiltransferase/antagonistas & inibidores , Glicina Hidroximetiltransferase/química , Humanos , Concentração de Íons de Hidrogênio , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Mitocôndrias/enzimologia , Modelos Biológicos , Serina/metabolismo , Especificidade por Substrato , Tetra-Hidrofolatos/metabolismo
4.
FEBS J ; 282(7): 1225-41, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25619277

RESUMO

Adaptive metabolic reprogramming gives cancer cells a proliferative advantage. Tumour cells extensively use glycolysis to sustain anabolism and produce serine, which not only refuels the one-carbon units necessary for the synthesis of nucleotide precursors and for DNA methylation, but also affects the cellular redox homeostasis. Given its central role in serine metabolism, serine hydroxymethyltransferase (SHMT), a pyridoxal 5'-phosphate (PLP)-dependent enzyme, is an attractive target for tumour chemotherapy. In humans, the cytosolic isoform (SHMT1) and the mitochondrial isoform (SHMT2) have distinct cellular roles, but high sequence identity and comparable catalytic properties, which may complicate development of successful therapeutic strategies. Here, we investigated how binding of the cofactor PLP controls the oligomeric state of the human isoforms. The fact that eukaryotic SHMTs are tetrameric proteins while bacterial SHMTs function as dimers may suggest that the quaternary assembly in eukaryotes provides an advantage to fine-tune SHMT function and differentially regulate intertwined metabolic fluxes, and may provide a tool to address the specificity problem. We determined the crystal structure of SHMT2, and compared it to the apo-enzyme structure, showing that PLP binding triggers a disorder-to-order transition accompanied by a large rigid-body movement of the two cofactor-binding domains. Moreover, we demonstrated that SHMT1 exists in solution as a tetramer, both in the absence and presence of PLP, while SHMT2 undergoes a dimer-to-tetramer transition upon PLP binding. These findings indicate an unexpected structural difference between the two human SHMT isoforms, which opens new perspectives for understanding their differing behaviours, roles or regulation mechanisms in response to PLP availability in vivo.


Assuntos
Glicina Hidroximetiltransferase/química , Fosfato de Piridoxal/química , Apoenzimas/química , Domínio Catalítico , Cristalografia por Raios X , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína
5.
Med Hypotheses ; 80(5): 633-6, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23474074

RESUMO

It was recently discovered that glycine consumption is strongly related to the rate of proliferation across cancer cells. This is very intriguing and raises the question of what is the actual role of this amino acid in cancer metabolism. Cancer cells are greedy for glycine. In particular, the mitochondrial production of glycine seems to be utterly important. Overexpression of mitochondrial serine hydroxymethyltransferase, the enzyme converting l-serine to glycine, assures an adequate supply of glycine to rapidly proliferating cancer cells. In fact, silencing of mitochondrial serine hydroxymethyltransferase was shown to halt cancer cell proliferation. Direct incorporation of glycine carbon atoms into the purine ring has been proposed to be one main reason for the importance of glycine in cancer cell metabolism. We believe that, as far as the importance of glycine in cancer is concerned, a central role of this amino acid, namely its participation to heme biosynthesis, has been neglected. In mitochondria, glycine condenses with succinyl-CoA to form 5-aminolevulinate, the universal precursor of the different forms of heme contained in cytochromes and oxidative phosphorylation complexes. Our hypothesis is that mitochondrial serine hydroxymethyltransferase is fundamental to sustain cancer metabolism since production of glycine fuels heme biosynthesis and therefore oxidative phosphorylation. Respiration of cancer cells may then ultimately rely on endogenous glycine synthesis by mitochondrial serine hydroxymethyltransferase. The link between mitochondrial serine hydroxymethyltransferase activity and heme biosynthesis represents an important and still unexplored aspect of the whole picture of cancer cell metabolism. Our hypothesis might be tested using a combination of metabolic tracing and gene silencing on different cancer cell lines. The experiments should be devised so as to assess the importance of mitochondrial serine hydroxymethyltransferase and the glycine deriving from its reaction as a precursor of heme. If the observed increase of glycine consumption in rapidly proliferating cancer cells has its basis in the need for heme biosynthesis, then mitochondrial serine hydroxymethyltransferase should be considered as a key target for the development of new chemotherapeutic agents.


Assuntos
Glicina Hidroximetiltransferase/metabolismo , Heme/biossíntese , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Neoplasias/enzimologia , Animais , Humanos , Taxa de Depuração Metabólica , Modelos Biológicos , Fosforilação
6.
PLoS One ; 7(7): e41680, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848564

RESUMO

Pyridoxal 5'-phosphate (PLP) is a cofactor for dozens of B(6) requiring enzymes. PLP reacts with apo-B(6) enzymes by forming an aldimine linkage with the ε-amino group of an active site lysine residue, thus yielding the catalytically active holo-B(6) enzyme. During protein turnover, the PLP is salvaged by first converting it to pyridoxal by a phosphatase and then back to PLP by pyridoxal kinase. Nonetheless, PLP poses a potential toxicity problem for the cell since its reactive 4'-aldehyde moiety forms covalent adducts with other compounds and non-B(6) proteins containing thiol or amino groups. The regulation of PLP homeostasis in the cell is thus an important, yet unresolved issue. In this report, using site-directed mutagenesis, kinetic, spectroscopic and chromatographic studies we show that pyridoxal kinase from E. coli forms a complex with the product PLP to form an inactive enzyme complex. Evidence is presented that, in the inhibited complex, PLP has formed an aldimine bond with an active site lysine residue during catalytic turnover. The rate of dissociation of PLP from the complex is very slow, being only partially released after a 2-hour incubation with PLP phosphatase. Interestingly, the inactive pyridoxal kinase•PLP complex can be partially reactivated by transferring the tightly bound PLP to an apo-B(6) enzyme. These results open new perspectives on the mechanism of regulation and role of pyridoxal kinase in the Escherichia coli cell.


Assuntos
Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Piridoxal Quinase/antagonistas & inibidores , Piridoxal Quinase/metabolismo , Fosfato de Piridoxal/metabolismo , Fosfato de Piridoxal/farmacologia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Biocatálise , Domínio Catalítico , Ativação Enzimática , Humanos , Cinética , Ligantes , Modelos Moleculares , Ligação Proteica , Piridoxal Quinase/química
7.
Eur J Med Chem ; 46(5): 1616-21, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21371789

RESUMO

Serine hydroxymethyltransferase (SHMT), a ubiquitous representative of the family of fold-type I, pyridoxal 5'-phosphate (PLP) dependent enzymes, catalyzes the reversible conversion of tetrahydrofolate (H4PteGlu) and serine to 5,10-CH2-H4PteGlu and glycine. Together with thymidylate synthase (TS) and dihydrofolate reductase (DHFR), SHMT participates to the thymidylate (dTMP) biosynthetic process. Elevated SHMT activity has been coupled to the increased demand for DNA synthesis in tumour cells. However, SHMT is the only enzyme of the thymidylate cycle yet to be targeted by chemotherapeutics. In this study, the interaction mode of SHMT with pemetrexed, an antifolate drug inhibiting several enzymes involved in folate-dependent biosynthetic pathways, was assessed. The mechanism of SHMT inhibition by pemetrexed was investigated in vitro using the human recombinant protein. The results of this study showed that pemetrexed competitively inhibits SHMT with respect to H4PteGlu with a measured Ki of 19.1±3.1 µM; this value was consistent with a Kd of 16.9±5.0 µM, measured by isothermal titration calorimetry. The binding mode of pemetrexed to SHMT was further investigated by molecular docking. The calculated interaction energy of pemetrexed in the active site of SHMT was -7.48 kcal/mol, and the corresponding predicted binding affinity was 36.3 µM, in good agreement with Kd and Ki values determined experimentally. The results thus provide insights into the mechanism of action of this antifolate drug and constitute the basis for the rational design of more selective inhibitors of SHMT.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Antagonistas do Ácido Fólico/farmacologia , Glicina Hidroximetiltransferase/antagonistas & inibidores , Protocolos de Quimioterapia Combinada Antineoplásica/síntese química , Protocolos de Quimioterapia Combinada Antineoplásica/química , Cristalografia por Raios X , Antagonistas do Ácido Fólico/síntese química , Antagonistas do Ácido Fólico/química , Glicina Hidroximetiltransferase/química , Glicina Hidroximetiltransferase/isolamento & purificação , Humanos , Modelos Moleculares , Estrutura Molecular , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Estereoisomerismo , Relação Estrutura-Atividade
8.
Protein Sci ; 16(10): 2184-94, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17766369

RESUMO

Pyridoxal kinase catalyzes the transfer of a phosphate group from ATP to the 5' alcohol of pyridoxine, pyridoxamine, and pyridoxal. In this work, kinetic studies were conducted to examine monovalent cation dependence of human pyridoxal kinase kinetic parameters. The results show that hPLK affinity for ATP and PL is increased manyfold in the presence of K(+) when compared to Na(+); however, the maximal activity of the Na(+) form of the enzyme is more than double the activity in the presence of K(+). Other monovalent cations, Li(+), Cs(+), and Rb(+) do not show significant activity. We have determined the crystal structure of hPLK in the unliganded form, and in complex with MgATP to 2.0 and 2.2 A resolution, respectively. Overall, the two structures show similar open conformation, and likely represent the catalytically idle state. The crystal structure of the MgATP complex also reveals Mg(2+) and Na(+) acting in tandem to anchor the ATP at the active site. Interestingly, the active site of hPLK acts as a sink to bind several molecules of MPD. The features of monovalent and divalent metal cation binding, active site structure, and vitamin B6 specificity are discussed in terms of the kinetic and structural studies, and are compared with those of the sheep and Escherichia coli enzymes.


Assuntos
Magnésio/química , Modelos Moleculares , Potássio/química , Piridoxal Quinase/química , Sódio/química , Trifosfato de Adenosina/química , Animais , Sítios de Ligação , Cátions Bivalentes/química , Cátions Monovalentes/química , Cristalografia por Raios X , Ativação Enzimática , Proteínas de Escherichia coli/química , Humanos , Cinética , Piridoxal Quinase/metabolismo , Ovinos
9.
J Bacteriol ; 188(12): 4542-52, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16740960

RESUMO

The pdxK and pdxY genes have been found to code for pyridoxal kinases, enzymes involved in the pyridoxal phosphate salvage pathway. Two pyridoxal kinase structures have recently been published, including Escherichia coli pyridoxal kinase 2 (ePL kinase 2) and sheep pyridoxal kinase, products of the pdxY and pdxK genes, respectively. We now report the crystal structure of E. coli pyridoxal kinase 1 (ePL kinase 1), encoded by a pdxK gene, and an isoform of ePL kinase 2. The structures were determined in the unliganded and binary complexes with either MgATP or pyridoxal to 2.1-, 2.6-, and 3.2-A resolutions, respectively. The active site of ePL kinase 1 does not show significant conformational change upon binding of either pyridoxal or MgATP. Like sheep PL kinase, ePL kinase 1 exhibits a sequential random mechanism. Unlike sheep pyridoxal kinase, ePL kinase 1 may not tolerate wide variation in the size and chemical nature of the 4' substituent on the substrate. This is the result of differences in a key residue at position 59 on a loop (loop II) that partially forms the active site. Residue 59, which is His in ePL kinase 1, interacts with the formyl group at C-4' of pyridoxal and may also determine if residues from another loop (loop I) can fill the active site in the absence of the substrate. Both loop I and loop II are suggested to play significant roles in the functions of PL kinases.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Piridoxal Quinase/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Escherichia coli/metabolismo , Proteínas de Escherichia coli/classificação , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Isoenzimas/química , Modelos Moleculares , Piridoxal/metabolismo , Piridoxal Quinase/classificação , Piridoxal Quinase/genética , Piridoxal Quinase/metabolismo , Especificidade por Substrato
10.
J Bacteriol ; 186(23): 8074-82, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15547280

RESUMO

The crystal structure of Escherichia coli PdxY, the protein product of the pdxY gene, has been determined to a 2.2-A resolution. PdxY is a member of the ribokinase superfamily of enzymes and has sequence homology with pyridoxal kinases that phosphorylate pyridoxal at the C-5' hydroxyl. The protein is a homodimer with an active site on each monomer composed of residues that come exclusively from each respective subunit. The active site is filled with a density that fits that of pyridoxal. In monomer A, the ligand appears to be covalently attached to Cys122 as a thiohemiacetal, while in monomer B it is not covalently attached but appears to be partially present as pyridoxal 5'-phosphate. The presence of pyridoxal phosphate and pyridoxal as ligands was confirmed by the activation of aposerine hydroxymethyltransferase after release of the ligand by the denaturation of PdxY. The ligand, which appears to be covalently attached to Cys122, does not dissociate after denaturation of the protein. A detailed comparison (of functional properties, sequence homology, active site and ATP-binding-site residues, and active site flap types) of PdxY with other pyridoxal kinases as well as the ribokinase superfamily in general suggested that PdxY is a member of a new subclass of the ribokinase superfamily. The structure of PdxY also permitted an interpretation of work that was previously published about this enzyme.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Piridoxal Quinase/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalização , Dados de Sequência Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/classificação , Piridoxal/metabolismo , Piridoxal Quinase/fisiologia
11.
Protein Expr Purif ; 36(2): 300-6, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15249053

RESUMO

Pyridoxal kinase is an ATP dependent enzyme that phosphorylates pyridoxal, pyridoxine, and pyridoxamine forming their respective 5'-phosphorylated esters. The kinase is a part of the salvage pathway for re-utilizing pyridoxal 5'-phosphate, which serves as a coenzyme for dozens of enzymes involved in amino acid and sugar metabolism. Clones of two pyridoxal kinases from Escherichia coli and one from human were inserted into a pET 22b plasmid and expressed in E. coli. All three enzymes were purified to near homogeneity and kinetic constants were determined for the three vitamin substrates. Previous studies had suggested that ZnATP was the preferred trinucleotide substrate, but our studies show that under physiological conditions MgATP is the preferred substrate. One of the two E. coli kinases has very low activity for pyridoxal, pyridoxine, and pyridoxamine. We conclude that in vivo this kinase may have an alternate substrate involved in another metabolic pathway and that pyridoxal has only a poor secondary activity for this kinase.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/isolamento & purificação , Escherichia coli/enzimologia , Piridoxal Quinase/química , Piridoxal Quinase/isolamento & purificação , Trifosfato de Adenosina/metabolismo , Aminoácidos/metabolismo , Metabolismo dos Carboidratos , Coenzimas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Humanos , Metabolismo/fisiologia , Plasmídeos , Piridoxal Quinase/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato/fisiologia , Vitamina B 6/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA