Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 16163, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31700112

RESUMO

Celiac disease is provoked by gluten exposure, but the complete pathogenic process in the duodenum and the loss of tolerance to gluten is not well understood. We aimed to define the core celiac transcriptomic signature and pathologic pathways in pre-treatment formalin-fixed paraffin-embedded (FFPE) duodenum biopsies used for clinical diagnosis. We use mRNAseq to define pre-treatment diagnostic duodenum gene expression in 54 pediatric celiac patients and non-celiac controls, and we validate our key findings in two independent cohorts of 67 adults and pediatric participants that used fresh frozen biopsies. We further define similar and divergent genes and pathways in 177 small bowel Crohn disease patients and controls. We observe a marked suppression of mature epithelial metabolic functions in celiac patients, overlapping substantially with the Crohn disease signature. A marked adaptive immune response was noted for the up-regulated signature including interferon response, alpha-beta, and gamma-delta T-cells that overlapped to some extent with the Crohn disease signature. However, we also identified a celiac disease specific signature linked to increased cell proliferation, nuclear division, and cell cycle activity that was localized primarily to the epithelia as noted by CCNB1 and Ki67 staining. Lastly, we demonstrate the utility of the transcriptomic date to correctly classify disease or healthy states in the discovery and validation cohorts. Our data supplement recently published datasets providing insights into celiac pathogenesis using clinical pathology FFPE samples, and can stimulate new approaches to address this highly prevalent condition.


Assuntos
Doença Celíaca , Duodeno , Mucosa Intestinal , Transcriptoma , Adolescente , Biópsia , Doença Celíaca/diagnóstico , Doença Celíaca/metabolismo , Doença Celíaca/patologia , Criança , Pré-Escolar , Doença de Crohn/tratamento farmacológico , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Ciclina B1/biossíntese , Duodeno/metabolismo , Duodeno/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Antígeno Ki-67/biossíntese , Masculino
2.
Am J Gastroenterol ; 114(7): 1142-1151, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30741738

RESUMO

OBJECTIVES: Crohn's disease (CD) is a chronic relapsing-remitting gut inflammatory disorder with a heterogeneous unpredictable course. Dysbiosis occurs in CD; however, whether microbial dynamics in quiescent CD are instrumental in increasing the risk of a subsequent flare remains undefined. METHODS: We analyzed the long-term dynamics of microbial composition in a prospective observational cohort of patients with quiescent CD (45 cases, 217 samples) over 2 years or until clinical flare occurred, aiming to identify whether changes in the microbiome precede and predict clinical relapse. Machine learning was used to prioritize microbial and clinical factors that discriminate between relapsers and nonrelapsers in the quiescent phase. RESULTS: Patients with CD in clinical, biomarker, and mucosal remission showed significantly reduced microbial richness and increased dysbiosis index compared with healthy controls. Of the 45 patients with quiescent CD, 12 (27%) flared during follow-up. Samples in quiescent patients preceding flare showed significantly reduced abundance of Christensenellaceae and S24.7, and increased abundance of Gemellaceae compared with those in remission throughout. A composite flare index was associated with a subsequent flare. Notably, higher individualized microbial instability in the quiescent phase was associated with a higher risk of a subsequent flare (hazard ratio 11.32, 95% confidence interval 3-42, P = 0.0035) using two preflare samples. Importantly, machine learning prioritized the flare index and the intrapersonal instability over clinical factors to best discriminate between relapsers and nonrelapsers. DISCUSSION: Individualized microbial variations in quiescent CD significantly increase the risk of future exacerbation and may provide a model to guide personalized preemptive therapy intensification.


Assuntos
Doença de Crohn/microbiologia , Doença de Crohn/patologia , Progressão da Doença , Disbiose/complicações , Microbioma Gastrointestinal/fisiologia , Monitorização Fisiológica/métodos , Adulto , Estudos de Casos e Controles , Doença de Crohn/terapia , Feminino , Seguimentos , Humanos , Mucosa Intestinal/microbiologia , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Recidiva , Valores de Referência , Medição de Risco , Índice de Gravidade de Doença , Estatísticas não Paramétricas , Fatores de Tempo
3.
Inflamm Bowel Dis ; 24(2): 346-360, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29361088

RESUMO

Background: Long noncoding RNAs (lncRNA) are key regulators of gene transcription and many show tissue-specific expression. We previously defined a novel inflammatory and metabolic ileal gene signature in treatment-naive pediatric Crohn disease (CD). We now extend our analyses to include potential regulatory lncRNA. Methods: Using RNAseq, we systematically profiled lncRNAs and protein-coding gene expression in 177 ileal biopsies. Co-expression analysis was used to identify functions and tissue-specific expression. RNA in situ hybridization was used to validate expression. Real-time polymerase chain reaction was used to test lncRNA regulation by IL-1ß in Caco-2 enterocytes. Results: We characterize widespread dysregulation of 459 lncRNAs in the ileum of CD patients. Using only the lncRNA in discovery and independent validation cohorts showed patient classification as accurate as the protein-coding genes, linking lncRNA to CD pathogenesis. Co-expression and functional annotation enrichment analyses across several tissues and cell types 1showed that the upregulated LINC01272 is associated with a myeloid pro-inflammatory signature, whereas the downregulated HNF4A-AS1 exhibits association with an epithelial metabolic signature. We confirmed tissue-specific expression in biopsies using in situ hybridization, and validated regulation of prioritized lncRNA upon IL-1ß exposure in differentiated Caco-2 cells. Finally, we identified significant correlations between LINC01272 and HNF4A-AS1 expression and more severe mucosal injury. Conclusions: We systematically define differentially expressed lncRNA in the ileum of newly diagnosed pediatric CD. We show lncRNA utility to correctly classify disease or healthy states and demonstrate their regulation in response to an inflammatory signal. These lncRNAs, after mechanistic exploration, may serve as potential new tissue-specific targets for RNA-based interventions.


Assuntos
Doença de Crohn/genética , Fator 4 Nuclear de Hepatócito/genética , RNA Longo não Codificante/genética , Adolescente , Células CACO-2 , Criança , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Íleo/metabolismo , Íleo/patologia , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Regulação para Cima
4.
Nat Commun ; 8(1): 1440, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-29129909

RESUMO

Adenosine deaminase acting on RNA 1 (ADAR1) is the master RNA editor, catalyzing the deamination of adenosine to inosine. RNA editing is vital for preventing abnormal activation of cytosolic nucleic acid sensing pathways by self-double-stranded RNAs. Here we determine, by parallel analysis of RNA secondary structure sequencing (PARS-seq), the global RNA secondary structure changes in ADAR1 deficient cells. Surprisingly, ADAR1 silencing resulted in a lower global double-stranded to single-stranded RNA ratio, suggesting that A-to-I editing can stabilize a large subset of imperfect RNA duplexes. The duplexes destabilized by editing are composed of vastly complementary inverted Alus found in untranslated regions of genes performing vital biological processes, including housekeeping functions and type-I interferon responses. They are predominantly cytoplasmic and generally demonstrate higher ribosomal occupancy. Our findings imply that the editing effect on RNA secondary structure is context dependent and underline the intricate regulatory role of ADAR1 on global RNA secondary structure.


Assuntos
Adenosina Desaminase/genética , Conformação de Ácido Nucleico , Edição de RNA/genética , RNA de Cadeia Dupla/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Adenosina/metabolismo , Composição de Bases/genética , Linhagem Celular Tumoral , Desaminação , Células Hep G2 , Humanos , Inosina/metabolismo , Biossíntese de Proteínas/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Transcriptoma/fisiologia
5.
Nature ; 530(7591): 441-6, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26863196

RESUMO

Gene expression can be regulated post-transcriptionally through dynamic and reversible RNA modifications. A recent noteworthy example is N(6)-methyladenosine (m(6)A), which affects messenger RNA (mRNA) localization, stability, translation and splicing. Here we report on a new mRNA modification, N(1)-methyladenosine (m(1)A), that occurs on thousands of different gene transcripts in eukaryotic cells, from yeast to mammals, at an estimated average transcript stoichiometry of 20% in humans. Employing newly developed sequencing approaches, we show that m(1)A is enriched around the start codon upstream of the first splice site: it preferentially decorates more structured regions around canonical and alternative translation initiation sites, is dynamic in response to physiological conditions, and correlates positively with protein production. These unique features are highly conserved in mouse and human cells, strongly indicating a functional role for m(1)A in promoting translation of methylated mRNA.


Assuntos
Adenosina/análogos & derivados , RNA Mensageiro/metabolismo , Regiões 5' não Traduzidas/genética , Adenosina/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Linhagem Celular Tumoral , Códon de Iniciação/genética , Sequência Conservada , Epigênese Genética , Evolução Molecular , Sequência Rica em GC/genética , Humanos , Metilação , Camundongos , Especificidade de Órgãos , Iniciação Traducional da Cadeia Peptídica/genética , Sítios de Splice de RNA/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae , Transcriptoma/genética
6.
PLoS One ; 4(7): e6128, 2009 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-19578540

RESUMO

BACKGROUND: The ErbB receptor tyrosine kinases and nucleolin are major contributors to malignant transformation. Recently we have found that cell-surface ErbB receptors interact with nucleolin via their cytoplasmic tail. Overexpression of ErbB1 and nucleolin leads to receptor phosphorylation, dimerization and anchorage independent growth. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we explored the regions of nucleolin and ErbB responsible for their interaction. Using mutational analyses, we addressed the structure-function relationship of the interaction between ErbB1 and nucleolin. We identified the ErbB1 nuclear localization domain as nucleolin interacting region. This region is important for nucleolin-associated receptor activation. Notably, though the tyrosine kinase domain is important for nucleolin-associated receptor activation, it is not involved in nucleolin/ErbB interactions. In addition, we demonstrated that the 212 c-terminal portion of nucleolin is imperative for the interaction with ErbB1 and ErbB4. This region of nucleolin is sufficient to induce ErbB1 dimerization, phosphorylation and growth in soft agar. CONCLUSIONS/SIGNIFICANCE: The oncogenic potential of ErbB depends on receptor levels and activation. Nucleolin affects ErbB dimerization and activation leading to enhanced cell growth. The C-terminal region of nucleolin and the ErbB1 NLS-domain mediate this interaction. Moreover, when the C-terminal 212 amino acids region of nucleolin is expressed with ErbB1, it can enhance anchorage independent cell growth. Taken together these results offer new insight into the role of ErbB1 and nucleolin interaction in malignant cells.


Assuntos
Receptores ErbB/fisiologia , Fosfoproteínas/fisiologia , Proteínas de Ligação a RNA/fisiologia , Sequência de Bases , Linhagem Celular , Primers do DNA , Receptores ErbB/química , Receptores ErbB/metabolismo , Humanos , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Ligação Proteica , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Relação Estrutura-Atividade , Nucleolina
7.
PLoS One ; 3(6): e2310, 2008 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-18523588

RESUMO

BACKGROUND: The ErbB receptor tyrosine kinases are major contributors to malignant transformation. These receptors are frequently overexpressed in a variety of human carcinomas. The role of the ErbB receptors and their ligands in carcinomas and the mechanism by which their overexpression leads to cancer development is still unclear. Ligand binding to specific ErbB receptor is followed by receptor dimerization, phosphorylation and recruitment of SH2 containing cytoplasmic proteins, which initiate the cascade of signaling events. Nevertheless, increasing data suggest that there are non-phosphorylated receptor-substrate interactions that may affect ErbB-mediated responses. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, using GST-ErbB4 fusion protein pull down assay and mass spectroscopic analysis, we have found the ErbB receptors interact with nucleolin via their cytoplasmic tail. Nucleolin is a ubiquitous, nonhistone, nucleolar, multifunctional phosphoprotein that is also overexpressed in cancer cells. Our results demonstrate that overexpression of ErbB1 and nucleolin may lead to receptor dimerization, phosphorylation and to anchorage independent growth. CONCLUSIONS/SIGNIFICANCE: The oncogenic potential of ErbB depends on receptor levels and activation. Our results suggest that nucleolin may affect ErbB dimerization and activation leading to enhanced cell growth.


Assuntos
Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Sequência de Bases , Divisão Celular , Linhagem Celular , Primers do DNA , Dimerização , Humanos , Fosforilação , Ligação Proteica , Ratos , Receptores Proteína Tirosina Quinases/química , Transdução de Sinais , Nucleolina
8.
J Mol Neurosci ; 29(3): 257-67, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17085783

RESUMO

The neuroprotective effects of neuregulin (NRG), a polypeptide growth factor, on 1-methyl-4-phenylpyridinium ion (MPP+)-induced cell death and oxidative stress in PC12-ErbB4 cells were investigated. Treatment of PC12-ErbB4 cells with MPP+ induced cell death that was markedly attenuated by NRG. The PI3K/PKB/Akt and Ras/MapK signaling pathways probably mediate the survival effect of NRG. NRG induces prolonged activation of PKB/Akt and Erk. Moreover, inhibition of the PI3K and MEK activities prevented the NRG-induced survival effect. Overexpression of constitutively active PI3K or H-Ras (12V) inhibited MPP+-mediated cell death. In addition, MPP+- mediated reactive oxygen species (ROS) elevation was also inhibited by NRG. The effect of NRG on ROS levels was blocked by PI3K and MEK inhibitors, indicating that both signaling pathways can regulate the toxic ROS levels induced by MPP+. Taken together, these results indicate that in PC12-ErbB4 cells, the NRG-induced neuroprotective effect from MPP+ treatment, requires PI3K/PKB/Akt and Ras/MapK signaling networks.


Assuntos
1-Metil-4-fenilpiridínio/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Receptores ErbB/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Neuregulina-1/farmacologia , Células PC12/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia , Transdução de Sinais/fisiologia , 1-Metil-4-fenilpiridínio/toxicidade , Animais , Cromonas/farmacologia , Receptores ErbB/efeitos dos fármacos , Flavonoides/farmacologia , Genes Reporter , Genes ras , Imidazóis/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Morfolinas/farmacologia , Células PC12/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/efeitos adversos , Fosfatidilinositol 3-Quinases/genética , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/fisiologia , Proteínas Proto-Oncogênicas p21(ras)/fisiologia , Piridinas/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Receptor ErbB-4 , Proteínas Recombinantes de Fusão/fisiologia , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transfecção
9.
J Mol Neurosci ; 26(1): 57-69, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15968086

RESUMO

Neuregulins (NRGs), which are highly expressed in the nervous system, bind and activate two receptor tyrosine kinases, ErbB-3 and ErbB-4. We previously showed that NRG mediates survival of PC12-ErbB-4 cells from apoptosis induced by serum deprivation, tumor necrosis factor-alpha treatment, or H2O2. These effects of NRGs are mediated by the phosphoinositide 3-kinase (PI3K) signaling pathway. In the present study, we show that NRG induces a significant protective effect from beta-amyloid 25-35 (Abeta[25-35]) peptide-induced cell death. The PI3K signaling pathway might be involved in this effect of NRG as the downstream effector of PI3K, protein kinase B (PKB/AkT), is activated by NRG in the presence of Abeta, and PKB/AkT activation is inhibited by the PI3K inhibitor, LY294002. In addition, our results demonstrate that Abeta-induced cell death is reduced by expression of activated PI3K. These results suggest that PI3K-dependent pathways might regulate the toxic effect of Abeta. In addition, Abeta induced alteration in the levels of the proapoptotic protein Bax. Neuregulin (NRG) treatment however, induced elevation in the levels of the antiapoptotic protein BclxL. The NRG-mediated BclxL elevation is regulated by protein kinase C (PKC), as NRG failed to elevate BclxL in the presence of the PKC inhibitor, GF109203X. Moreover, activation of PKC by phorbol 12-myristate 13-acetate markedly attenuated cell death induced by Abeta and induced elevation in BclxL levels. The results suggest that NRG might affect cell viability using two signaling pathways: activation of PI3K/PKB/AkT pathway and activation of PKC, which results in increasing levels of the antiapoptotic protein BclxL.


Assuntos
Precursor de Proteína beta-Amiloide/farmacologia , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Receptores ErbB/metabolismo , Neuregulina-1/farmacologia , Animais , Apoptose/efeitos dos fármacos , Humanos , Células PC12 , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Quinase C/metabolismo , Ratos , Receptor ErbB-4 , Proteínas Recombinantes/farmacologia , Acetato de Tetradecanoilforbol/farmacologia , Transfecção
10.
J Biol Chem ; 280(9): 8503-12, 2005 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-15611079

RESUMO

Four ErbB receptors and multiple growth factors sharing an epidermal growth factor (EGF) motif underlie transmembrane signaling by the ErbB family in development and cancer. Unlike other ErbB proteins, ErbB-2 binds no known EGF-like ligand. To address the existence of a direct ligand for ErbB-2, we applied algorithms based on genomic and cDNA structures to search sequence data bases. These searches reidentified all known EGF-like growth factors including Epigen (EPG), the least characterized ligand, but failed to identify novel factors. The precursor of EPG is a widely expressed transmembrane glycoprotein that undergoes cleavage at two sites to release a soluble EGF-like domain. A recombinant EPG cannot stimulate cells singly expressing ErbB-2, but it acts as a mitogen for cells expressing ErbB-1 and co-expressing ErbB-2 in combination with the other ErbBs. Interestingly, soluble EPG is more mitogenic than EGF, although its binding affinity is 100-fold lower. Our results attribute the anomalous mitogenic power of EPG to evasion of receptor-mediated depletion of ligand molecules, as well as to inefficient receptor ubiquitylation and down-regulation. In conclusion, EPG might represent the last EGF-like growth factor and define a category of low affinity ligands, whose bioactivity differs from the more extensively studied high affinity ligands.


Assuntos
Fator de Crescimento Epidérmico/química , Fator de Crescimento Epidérmico/fisiologia , Receptor ErbB-2/metabolismo , Algoritmos , Motivos de Aminoácidos , Animais , Células CHO , Células COS , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Proliferação de Células , Clonagem Molecular , Biologia Computacional , Cricetinae , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Regulação para Baixo , Fator de Crescimento Epidérmico/metabolismo , Epigen , Éxons , Glicoproteínas/química , Glicoproteínas/metabolismo , Substâncias de Crescimento , Humanos , Concentração de Íons de Hidrogênio , Imuno-Histoquímica , Íntrons , Ligantes , Masculino , Camundongos , Camundongos Nus , Mitógenos/química , Transplante de Neoplasias , Fosforilação , Filogenia , Reação em Cadeia da Polimerase , Neoplasias da Próstata/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Coelhos , Transdução de Sinais , Fatores de Tempo , Distribuição Tecidual , Ubiquitina/química
11.
Prostate ; 55(2): 147-57, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12661040

RESUMO

BACKGROUND: Prostate cancer is one of the most frequently diagnosed cancers in males. Autocrine/paracrine growth factors for the epidermal growth factor receptor (EGFR) have been identified in prostate tumors suggesting a role for EGFR in the progression of prostate cancer. The androgen-dependent prostate cancer cell line, LNCaP, expresses the EGFR as well as two additional members of the family; ErbB-2 and ErbB-3, which can be activated by neuregulin (NRG) isoforms. The effect of ErbB ligands on the viability of LNCaP cells was studied. METHODS: In the present study, we examined the effect of NRG on LNCaP cell growth and survival in the absence of androgen mimetic by the MTT assay, FACS analysis, nuclei staining, and Western blotting. RESULTS: Our results demonstrate that NRG activates ErbB-2/ErbB-3 heterodimers and induces cell death of LNCaP cells. By contrast, EGF activates ErbB-1/ErbB-1 or ErbB-1/ErbB-2 dimers and induces cell growth and survival. Interestingly, LNCaP cells treated with PI3K inhibitor underwent cell death but cells treated with both NRG and PI3K inhibitor survived as the control cells, indicating that the PI3K pathway may mediate NRG-induced cell death. NRG-induced cell death was not inhibited by the broad-spectrum caspases inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD-FMK). However, NRG-induced cell death was inhibited by type II cell death inhibitor, 3-methyladenine. CONCLUSIONS: These results suggest that NRG induces type II cell death of LNCaP cells through PI3K-dependent pathway.


Assuntos
Adenina/análogos & derivados , Neurregulinas/fisiologia , Neoplasias da Próstata/fisiopatologia , Adenina/farmacologia , Clorometilcetonas de Aminoácidos/farmacologia , Autofagia/fisiologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Divisão Celular/efeitos dos fármacos , Cromonas/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Inibidores Enzimáticos/farmacologia , Fator de Crescimento Epidérmico/farmacologia , Humanos , Ligantes , Masculino , Morfolinas/farmacologia , Neurregulinas/farmacologia , Fosforilação , Neoplasias da Próstata/patologia , Células Tumorais Cultivadas , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA