Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Trends Immunol ; 44(10): 782-791, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37640588

RESUMO

The DNA double-strand break (DSB) repair factor 53BP1 has long been implicated in V(D)J and class switch recombination (CSR) of mammalian lymphocyte receptors. However, the dissection of the underlying molecular activities is hampered by a paucity of studies [V(D)J] and plurality of phenotypes (CSR) associated with 53BP1 deficiency. Here, we revisit the currently accepted roles of 53BP1 in antibody diversification in view of the recent identification of its downstream effectors in DSB protection and latest advances in genome architecture. We propose that, in addition to end protection, 53BP1-mediated end-tethering stabilization is essential for CSR. Furthermore, we support a pre-DSB role during V(D)J recombination. Our perspective underscores the importance of evaluating repair of DSBs in relation to their dynamic architectural contexts.


Assuntos
Anticorpos , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Animais , Humanos , Camundongos , Anticorpos/genética , Switching de Imunoglobulina/genética , Linfócitos , Mamíferos
2.
Elife ; 112022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35416772

RESUMO

RIF1 is a multifunctional protein that plays key roles in the regulation of DNA processing. During repair of DNA double-strand breaks (DSBs), RIF1 functions in the 53BP1-Shieldin pathway that inhibits resection of DNA ends to modulate the cellular decision on which repair pathway to engage. Under conditions of replication stress, RIF1 protects nascent DNA at stalled replication forks from degradation by the DNA2 nuclease. How these RIF1 activities are regulated at the post-translational level has not yet been elucidated. Here, we identified a cluster of conserved ATM/ATR consensus SQ motifs within the intrinsically disordered region (IDR) of mouse RIF1 that are phosphorylated in proliferating B lymphocytes. We found that phosphorylation of the conserved IDR SQ cluster is dispensable for the inhibition of DSB resection by RIF1, but is essential to counteract DNA2-dependent degradation of nascent DNA at stalled replication forks. Therefore, our study identifies a key molecular feature that enables the genome-protective function of RIF1 during DNA replication stress.


Assuntos
Quebras de DNA de Cadeia Dupla , Replicação do DNA , Animais , DNA/metabolismo , Reparo do DNA , Camundongos , Fosforilação , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
3.
Trends Biochem Sci ; 46(3): 184-199, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33250286

RESUMO

Immunoglobulin (Ig) class switch recombination (CSR) is the process occurring in mature B cells that diversifies the effector component of antibody responses. CSR is initiated by the activity of the B cell-specific enzyme activation-induced cytidine deaminase (AID), which leads to the formation of programmed DNA double-strand breaks (DSBs) at the Ig heavy chain (Igh) locus. Mature B cells use a multilayered and complex regulatory framework to ensure that AID-induced DNA breaks are channeled into productive repair reactions leading to CSR, and to avoid aberrant repair events causing lymphomagenic chromosomal translocations. Here, we review the DNA repair pathways acting on AID-induced DSBs and their functional interplay, with a particular focus on the latest developments in their molecular composition and mechanistic regulation.


Assuntos
Quebras de DNA de Cadeia Dupla , Switching de Imunoglobulina , Linfócitos B , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Reparo do DNA , Cadeias Pesadas de Imunoglobulinas/genética
4.
Cell Rep ; 28(6): 1389-1399.e6, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31390554

RESUMO

Class switch recombination (CSR) is a DNA recombination reaction that diversifies the effector functions of antibodies. CSR occurs via the formation and non-homologous end joining (NHEJ) repair of programmed DNA double-strand breaks (DSBs) at the immunoglobulin heavy chain locus. The DNA repair factors 53BP1 and Rif1 promote NHEJ and CSR by protecting DSBs against resection. However, to what extent repression of DNA end resection contributes to CSR is unknown. Here, we show that B lymphocytes devoid of 53BP1-Rif1-dependent DSB end protection activity undergo robust CSR. Inactivation of specific sets of phospho-sites within 53BP1 N-terminal SQ/TQ motifs abrogates Rif1 recruitment and inhibition of resection but only mildly reduces CSR. Furthermore, mutations within 53BP1 oligomerization domain abolish CSR without substantially affecting DNA end processing. Thus, inhibition of DNA end resection does not correlate with CSR efficiency, indicating that regulation of DSB processing is not a key determinant step in CSR.


Assuntos
Reparo do DNA por Junção de Extremidades , Switching de Imunoglobulina , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/fisiologia , Animais , Linfócitos B/imunologia , Quebras de DNA de Cadeia Dupla , Feminino , Humanos , Masculino , Camundongos , Proteínas de Ligação a Telômeros/metabolismo
5.
Mol Cell ; 72(4): 636-649.e8, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30293785

RESUMO

Class switch recombination (CSR) is a DNA recombination reaction that diversifies the effector component of antibody responses. CSR is initiated by activation-induced cytidine deaminase (AID), which targets transcriptionally active immunoglobulin heavy chain (Igh) switch donor and acceptor DNA. The 3' Igh super-enhancer, 3' regulatory region (3'RR), is essential for acceptor region transcription, but how this function is regulated is unknown. Here, we identify the chromatin reader ZMYND8 as an essential regulator of the 3'RR. In B cells, ZMYND8 binds promoters and super-enhancers, including the Igh enhancers. ZMYND8 controls the 3'RR activity by modulating the enhancer transcriptional status. In its absence, there is increased 3'RR polymerase loading and decreased acceptor region transcription and CSR. In addition to CSR, ZMYND8 deficiency impairs somatic hypermutation (SHM) of Igh, which is also dependent on the 3'RR. Thus, ZMYND8 controls Igh diversification in mature B lymphocytes by regulating the activity of the 3' Igh super-enhancer.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Switching de Imunoglobulina/genética , Cadeias Pesadas de Imunoglobulinas/genética , Proteínas Supressoras de Tumor/genética , Animais , Linfócitos B , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , DNA/genética , Elementos Facilitadores Genéticos , Rearranjo Gênico , Humanos , Domínios MYND , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Hipermutação Somática de Imunoglobulina/genética , Proteínas Supressoras de Tumor/metabolismo
6.
Blood ; 131(12): 1311-1324, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29348130

RESUMO

The regenerative capacity of hematopoietic stem cells (HSCs) is limited by the accumulation of DNA damage. Conditional mutagenesis of the histone 3 lysine 4 (H3K4) methyltransferase, Setd1a, revealed that it is required for the expression of DNA damage recognition and repair pathways in HSCs. Specific deletion of Setd1a in adult long-term (LT) HSCs is compatible with adult life and has little effect on the maintenance of phenotypic LT-HSCs in the bone marrow. However, SETD1A-deficient LT-HSCs lose their transcriptional cellular identity, accompanied by loss of their proliferative capacity and stem cell function under replicative stress in situ and after transplantation. In response to inflammatory stimulation, SETD1A protects HSCs and progenitors from activation-induced attrition in vivo. The comprehensive regulation of DNA damage responses by SETD1A in HSCs is clearly distinct from the key roles played by other epigenetic regulators, including the major leukemogenic H3K4 methyltransferase MLL1, or MLL5, indicating that HSC identity and function is supported by cooperative specificities within an epigenetic framework.


Assuntos
Proliferação de Células , Dano ao DNA , Reparo do DNA , Células-Tronco Hematopoéticas/enzimologia , Histona-Lisina N-Metiltransferase/metabolismo , Animais , Histona-Lisina N-Metiltransferase/genética , Camundongos , Camundongos Knockout , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo
7.
Cancer Cell ; 32(3): 342-359.e10, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28898696

RESUMO

Concomitant hepatocyte apoptosis and regeneration is a hallmark of chronic liver diseases (CLDs) predisposing to hepatocellular carcinoma (HCC). Here, we mechanistically link caspase-8-dependent apoptosis to HCC development via proliferation- and replication-associated DNA damage. Proliferation-associated replication stress, DNA damage, and genetic instability are detectable in CLDs before any neoplastic changes occur. Accumulated levels of hepatocyte apoptosis determine and predict subsequent hepatocarcinogenesis. Proliferation-associated DNA damage is sensed by a complex comprising caspase-8, FADD, c-FLIP, and a kinase-dependent function of RIPK1. This platform requires a non-apoptotic function of caspase-8, but no caspase-3 or caspase-8 cleavage. It may represent a DNA damage-sensing mechanism in hepatocytes that can act via JNK and subsequent phosphorylation of the histone variant H2AX.


Assuntos
Carcinogênese/metabolismo , Carcinogênese/patologia , Caspase 8/metabolismo , Dano ao DNA , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/patologia , Animais , Apoptose , Carcinoma Hepatocelular/patologia , Proliferação de Células , Senescência Celular , Doença Crônica , Cruzamentos Genéticos , Reparo do DNA , Proteína de Domínio de Morte Associada a Fas/metabolismo , Feminino , Instabilidade Genômica , Hepatectomia , Hepatócitos/patologia , Histonas/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fígado/metabolismo , Fígado/patologia , Regeneração Hepática , Masculino , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Fosforilação , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fatores de Risco
8.
Immunity ; 43(6): 1075-86, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26620760

RESUMO

Phosphatidylinositol 3' OH kinase (PI3K) signaling and FOXO transcription factors play opposing roles at several B cell developmental stages. We show here abundant nuclear FOXO1 expression in the proliferative compartment of the germinal center (GC), its dark zone (DZ), and PI3K activity, downregulating FOXO1, in the light zone (LZ), where cells are selected for further differentiation. In the LZ, however, FOXO1 was expressed in a fraction of cells destined for DZ reentry. Upon FOXO1 ablation or induction of PI3K activity, GCs lost their DZ, owing at least partly to downregulation of the chemokine receptor CXCR4. Although this prevented proper cyclic selection of cells in GCs, somatic hypermutation and proliferation were maintained. Class switch recombination was partly lost due to a failure of switch region targeting by activation-induced deaminase (AID).


Assuntos
Linfócitos B/imunologia , Diferenciação Celular/imunologia , Fatores de Transcrição Forkhead/imunologia , Centro Germinativo/imunologia , Fosfatidilinositol 3-Quinases/imunologia , Animais , Linfócitos B/citologia , Separação Celular , Cromatografia Líquida , Citidina Desaminase/imunologia , Citometria de Fluxo , Imunofluorescência , Proteína Forkhead Box O1 , Regulação da Expressão Gênica/imunologia , Centro Germinativo/citologia , Switching de Imunoglobulina/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Mutantes , Reação em Cadeia da Polimerase , Hipermutação Somática de Imunoglobulina/imunologia , Espectrometria de Massas em Tandem
9.
Cell ; 153(6): 1266-80, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23727112

RESUMO

The DNA damage response (DDR) protein 53BP1 protects DNA ends from excessive resection in G1, and thereby favors repair by nonhomologous end-joining (NHEJ) as opposed to homologous recombination (HR). During S phase, BRCA1 antagonizes 53BP1 to promote HR. The pro-NHEJ and antirecombinase functions of 53BP1 are mediated in part by RIF1, the only known factor that requires 53BP1 phosphorylation for its recruitment to double-strand breaks (DSBs). Here, we show that a 53BP1 phosphomutant, 53BP18A, comprising alanine substitutions of the eight most N-terminal S/TQ phosphorylation sites, mimics 53BP1 deficiency by restoring genome stability in BRCA1-deficient cells yet behaves like wild-type 53BP1 with respect to immunoglobulin class switch recombination (CSR). 53BP18A recruits RIF1 but fails to recruit the DDR protein PTIP to DSBs, and disruption of PTIP phenocopies 53BP18A. We conclude that 53BP1 promotes productive CSR and suppresses mutagenic DNA repair through distinct phosphodependent interactions with RIF1 and PTIP.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/metabolismo , Switching de Imunoglobulina , Proteínas Nucleares/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Animais , Linfócitos B/metabolismo , Proteína BRCA1/metabolismo , Proteínas Cromossômicas não Histona/genética , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Instabilidade Genômica , Camundongos , Mutação , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
10.
Science ; 339(6120): 711-5, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23306439

RESUMO

DNA double-strand breaks (DSBs) represent a threat to the genome because they can lead to the loss of genetic information and chromosome rearrangements. The DNA repair protein p53 binding protein 1 (53BP1) protects the genome by limiting nucleolytic processing of DSBs by a mechanism that requires its phosphorylation, but whether 53BP1 does so directly is not known. Here, we identify Rap1-interacting factor 1 (Rif1) as an ATM (ataxia-telangiectasia mutated) phosphorylation-dependent interactor of 53BP1 and show that absence of Rif1 results in 5'-3' DNA-end resection in mice. Consistent with enhanced DNA resection, Rif1 deficiency impairs DNA repair in the G(1) and S phases of the cell cycle, interferes with class switch recombination in B lymphocytes, and leads to accumulation of chromosome DSBs.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Switching de Imunoglobulina , Proteínas de Ligação a Telômeros/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Reparo do DNA , Proteínas de Ligação a DNA/antagonistas & inibidores , Fase G1 , Fase G2 , Instabilidade Genômica , Camundongos , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Fase S , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
11.
Cell ; 147(1): 95-106, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21962510

RESUMO

Chromosomal rearrangements, including translocations, require formation and joining of DNA double strand breaks (DSBs). These events disrupt the integrity of the genome and are frequently involved in producing leukemias, lymphomas and sarcomas. Despite the importance of these events, current understanding of their genesis is limited. To examine the origins of chromosomal rearrangements we developed Translocation Capture Sequencing (TC-Seq), a method to document chromosomal rearrangements genome-wide, in primary cells. We examined over 180,000 rearrangements obtained from 400 million B lymphocytes, revealing that proximity between DSBs, transcriptional activity and chromosome territories are key determinants of genome rearrangement. Specifically, rearrangements tend to occur in cis and to transcribed genes. Finally, we find that activation-induced cytidine deaminase (AID) induces the rearrangement of many genes found as translocation partners in mature B cell lymphoma.


Assuntos
Linfócitos B/metabolismo , Genoma , Mutagênese , Translocação Genética , Animais , Células Cultivadas , Citidina Desaminase/metabolismo , Genes myc , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Camundongos , Neoplasias/genética , Análise de Sequência de DNA/métodos , Baço/citologia
12.
Mol Cell ; 42(3): 319-29, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21549309

RESUMO

53BP1 is a DNA damage protein that forms phosphorylated H2AX (γ-H2AX) dependent foci in a 1 Mb region surrounding DNA double-strand breaks (DSBs). In addition, 53BP1 promotes genomic stability by regulating the metabolism of DNA ends. We have compared the joining rates of paired DSBs separated by 1.2 kb to 27 Mb on chromosome 12 in the presence or absence of 53BP1. 53BP1 facilitates joining of intrachromosomal DSBs but only at distances corresponding to γ-H2AX spreading. In contrast, DNA end protection by 53BP1 is distance independent. Furthermore, analysis of 53BP1 mutants shows that chromatin association, oligomerization, and N-terminal ATM phosphorylation are all required for DNA end protection and joining as measured by immunoglobulin class switch recombination. These data elucidate the molecular events that are required for 53BP1 to maintain genomic stability and point to a model wherein 53BP1 and H2AX cooperate to repress resection of DSBs.


Assuntos
Proteínas Cromossômicas não Histona/genética , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/genética , Switching de Imunoglobulina/genética , Animais , Linfócitos B/metabolismo , Sítios de Ligação , Western Blotting , Células Cultivadas , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Citometria de Fluxo , Histonas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Genéticos , Fosforilação , Multimerização Proteica , Recombinação Genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
13.
Mol Cell Biol ; 31(3): 442-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21135131

RESUMO

Activation-induced cytidine deaminase (AID) is a mutator enzyme that initiates class switch recombination and somatic hypermutation of immunoglobulin genes (Ig) in B lymphocytes. However, AID also produces off-target DNA damage, including mutations in oncogenes and double-stranded breaks that can serve as substrates for oncogenic chromosomal translocations. AID is strictly regulated by a number of mechanisms, including phosphorylation at serine 38 and threonine 140, which increase activity. Here we show that phosphorylation can also suppress AID activity in vivo. Serine 3 is a novel phospho-acceptor which, when mutated to alanine, leads to increased class switching and c-myc/IgH translocations without affecting AID levels or catalytic activity. Conversely, increasing AID phosphorylation specifically on serine 3 by interfering with serine/threonine protein phosphatase 2A (PP2A) leads to decreased class switching. We conclude that AID activity and its oncogenic potential can be downregulated by phosphorylation of serine 3 and that this process is controlled by PP2A.


Assuntos
Citidina Desaminase/química , Citidina Desaminase/metabolismo , Cadeias Pesadas de Imunoglobulinas/genética , Proteínas Proto-Oncogênicas c-myc/genética , Translocação Genética , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Inibidores Enzimáticos/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Switching de Imunoglobulina/efeitos dos fármacos , Camundongos , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Proteína Fosfatase 2/antagonistas & inibidores , Proteína Fosfatase 2/metabolismo , Recombinação Genética/efeitos dos fármacos , Recombinação Genética/genética , Hipermutação Somática de Imunoglobulina/efeitos dos fármacos , Hipermutação Somática de Imunoglobulina/genética , Translocação Genética/efeitos dos fármacos
14.
Cell ; 143(1): 122-33, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20887897

RESUMO

Activation-induced cytidine deaminase (AID) initiates antibody gene diversification by creating U:G mismatches. However, AID is not specific for antibody genes; Off-target lesions can activate oncogenes or cause chromosome translocations. Despite its importance in these transactions little is known about how AID finds its targets. We performed an shRNA screen to identify factors required for class switch recombination (CSR) of antibody loci. We found that Spt5, a factor associated with stalled RNA polymerase II (Pol II) and single stranded DNA (ssDNA), is required for CSR. Spt5 interacts with AID, it facilitates association between AID and Pol II, and AID recruitment to its Ig and non-Ig targets. ChIP-seq experiments reveal that Spt5 colocalizes with AID and stalled Pol II. Further, Spt5 accumulation at sites of Pol II stalling is predictive of AID-induced mutation. We propose that AID is targeted to sites of Pol II stalling in part via its association with Spt5.


Assuntos
Linfócitos B/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Citidina Desaminase/metabolismo , Switching de Imunoglobulina , RNA Polimerase II/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Humanos , Imunoglobulinas/genética , Camundongos
15.
DNA Repair (Amst) ; 8(11): 1311-20, 2009 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-19709933

RESUMO

The role of Mre11 phosphorylation in the cellular response to DNA double-strand breaks (DSBs) is not well understood. Here, we show that phosphorylation of Mre11 at SQ/TQ motifs by PIKKs (PI3 Kinase-related Kinases) induces MRN (Mre11-Rad50-Nbs1) complex dissociation from chromatin by reducing Mre11 affinity for DNA. Whereas phosphorylation of Mre11 at these residues is not required for DSB-induced ATM (Ataxia-Telangiectasia mutated) activation, abrogation of Mre11 dephosphorylation impairs ATM signaling. Our study provides a functional characterization of the DNA damage-induced Mre11 phosphorylation, and suggests that MRN inactivation participates in the down-regulation of damage signaling during checkpoint recovery following DSB repair.


Assuntos
Proteínas de Transporte/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/metabolismo , Proteínas Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Enzimas Reparadoras do DNA , Proteínas de Ligação a DNA/química , Ativação Enzimática , Humanos , Proteína Homóloga a MRE11 , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Alinhamento de Sequência , Proteínas de Xenopus/química
16.
Mol Cell ; 34(3): 285-97, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19450527

RESUMO

The DNA double-strand break (DSB) repair protein DNA-PKcs and the signal transducer ATM are both activated by DNA breaks and phosphorylate similar substrates in vitro, yet appear to have distinct functions in vivo. Here, we show that ATM and DNA-PKcs have overlapping functions in lymphocytes. Ablation of both kinase activities in cells undergoing immunoglobulin class switch recombination leads to a compound defect in switching and a synergistic increase in chromosomal fragmentation, DNA insertions, and translocations due to aberrant processing of DSBs. These abnormalities are attributed to a compound deficiency in phosphorylation of key proteins required for DNA repair, class switching, and cell death. Notably, both kinases are required for normal levels of p53 phosphorylation in B and T cells and p53-dependent apoptosis. Our experiments reveal a DNA-PKcs-dependent pathway that regulates DNA repair and activation of p53 in the absence of ATM.


Assuntos
Apoptose/fisiologia , Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Linfócitos/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Sequência de Bases , Proteínas de Ciclo Celular/genética , Células Cultivadas , Proteína Quinase Ativada por DNA/genética , Proteínas de Ligação a DNA/genética , Fibroblastos/citologia , Fibroblastos/fisiologia , Instabilidade Genômica , Switching de Imunoglobulina , Linfócitos/citologia , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Timo/citologia , Proteína 28 com Motivo Tripartido , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética
17.
Immunity ; 28(5): 630-8, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18455451

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs that regulate vast networks of genes that share miRNA target sequences. To examine the physiologic effects of an individual miRNA-mRNA interaction in vivo, we generated mice that carry a mutation in the putative microRNA-155 (miR-155) binding site in the 3'-untranslated region of activation-induced cytidine deaminase (AID), designated Aicda(155) mice. AID is required for immunoglobulin gene diversification in B lymphocytes, but it also promotes chromosomal translocations. Aicda(155) caused an increase in steady-state Aicda mRNA and protein amounts by increasing the half-life of the mRNA, resulting in a high degree of Myc-Igh translocations. A similar but more pronounced translocation phenotype was also found in miR-155-deficient mice. Our experiments indicate that miR-155 can act as a tumor suppressor by reducing potentially oncogenic translocations generated by AID.


Assuntos
Linfócitos B/enzimologia , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Genes myc , Cadeias Pesadas de Imunoglobulinas/genética , MicroRNAs/metabolismo , Translocação Genética , Regiões 3' não Traduzidas , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Genes de Imunoglobulinas , Switching de Imunoglobulina , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Mutantes , MicroRNAs/genética , Mutação , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Hipermutação Somática de Imunoglobulina
18.
J Biol Chem ; 277(8): 6455-62, 2002 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-11719521

RESUMO

Congenital insensitivity to pain with anhidrosis (CIPA) is a rare genetic disease characterized by absence of reaction to noxious stimuli and anhidrosis. The genetic bases of CIPA have remained long unknown. A few years ago, point mutations affecting both coding and noncoding regions of the neurotrophic tyrosine receptor kinase type 1 (NTRK1)/nerve growth factor receptor gene have been detected in CIPA patients, demonstrating the implication of the nerve growth factor/NTRK1 pathway in the pathogenesis of the disease. We have previously shown that two CIPA mutations, the G571R and the R774P, inactivate the NTRK1 receptor by interfering with the autophosphorylation process. We have extended our functional analysis to seven additional NTRK1 mutations associated with CIPA recently reported by others. Through a combination of biochemical and biological assays, we have identified polymorphisms and pathogenic mutations. In addition to the identification of residues important for NTRK1 activity, our analysis suggests the existence of two novel pathogenic mechanisms in CIPA: one based on the NTRK1 receptor processing and the other acting through the reduction of the receptor activity.


Assuntos
Hipo-Hidrose/genética , Mutação de Sentido Incorreto , Mutação , Fator de Crescimento Neural/farmacologia , Insensibilidade Congênita à Dor/genética , Receptor de Fator de Crescimento Neural/genética , Receptor trkA/genética , Substituição de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Humanos , Cinética , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA