Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 8228, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217548

RESUMO

Accelerated progression of chronic obstructive pulmonary disease (COPD) is associated with increased risks of hospitalization and death. Prognostic insights into mechanisms and markers of progression could facilitate development of disease-modifying therapies. Although individual biomarkers exhibit some predictive value, performance is modest and their univariate nature limits network-level insights. To overcome these limitations and gain insights into early pathways associated with rapid progression, we measured 1305 peripheral blood and 48 bronchoalveolar lavage proteins in individuals with COPD [n = 45, mean initial forced expiratory volume in one second (FEV1) 75.6 ± 17.4% predicted]. We applied a data-driven analysis pipeline, which enabled identification of protein signatures that predicted individuals at-risk for accelerated lung function decline (FEV1 decline ≥ 70 mL/year) ~ 6 years later, with high accuracy. Progression signatures suggested that early dysregulation in elements of the complement cascade is associated with accelerated decline. Our results propose potential biomarkers and early aberrant signaling mechanisms driving rapid progression in COPD.


Assuntos
Pulmão , Doença Pulmonar Obstrutiva Crônica , Humanos , Progressão da Doença , Fumar/efeitos adversos , Volume Expiratório Forçado , Lavagem Broncoalveolar , Biomarcadores
2.
Acta Biomater ; 132: 313-324, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-33766798

RESUMO

Synthetic matrices offer a high degree of control and tunability for mimicking extracellular matrix functions of native tissue, allowing the study of disease and development in vitro. In this study, we functionalized degradable poly(ethylene glycol) hydrogels with extracellular matrix (ECM)-sequestering peptides aiming to recapitulate the native ECM composition for culture and maturation of ovarian follicular organoids. We hypothesized that ECM-sequestering peptides would facilitate deposition and retention of cell-secreted ECM molecules, thereby recreating cell-matrix interactions in otherwise bioinert PEG hydrogels. Specifically, heparin-binding peptide from antithrombin III (HBP), heparan sulfate binding peptide derived from laminin (AG73), basement membrane binder peptide (BMB), and heparan sulfate binding region of placental growth factor 2 (RRR) tethered to a PEG hydrogel significantly improved follicle survival, growth and maturation compared to PEG-Cys, a mechanically similar but biologically inert control. Immunohistochemical analysis of the hydrogel surrounding cultured follicles confirmed sequestration and retention of laminin, collagen I, perlecan, and fibronectin in ECM-sequestering hydrogels but not in bioinert PEG-Cys hydrogels. The media from follicles cultured in PEG-AG73, PEG-BMB, and PEG-RRR also had significantly higher concentrations of factors known to regulate follicle development compared to PEG-Cys. PEG-AG73 and PEG-BMB were the most beneficial for promoting follicle maturation, likely because AG73 and BMB mimic basement membrane interactions which are crucial for follicle development. Here we have shown that functionalizing PEG with ECM-sequestering peptides allows cell-secreted ECM to be retained within the hydrogels, restoring critical cell-matrix interactions and promoting healthy organoid development in a fully synthetic culture system. STATEMENT OF SIGNIFICANCE: Here we present a novel approach for sequestering and retaining cell-secreted extracellular matrix in a fully synthetic material for organoid culture. We have engineered a biomimetic poly(ethylene glycol) hydrogel functionalized with extracellular matrix-binding peptides to recapitulate the ovarian microenvironment. Incorporation of these peptides allows ovarian follicles to recreate their native matrix with the sequestered ECM that subsequently binds growth factors, facilitating follicle maturation. The novel design resulted in improved outcomes of folliculogenesis, potentially developing a fertility preservation option for young women undergoing sterilizing treatments for cancer. The fully synthetic and modular nature of this biomimetic material holds promise for other tissue engineering applications as it allows encapsulated cells to rebuild their native microenvironments in vitro.


Assuntos
Proteínas da Matriz Extracelular , Preservação da Fertilidade , Animais , Matriz Extracelular , Feminino , Humanos , Hidrogéis/farmacologia , Camundongos , Oócitos , Fator de Crescimento Placentário , Polietilenoglicóis/farmacologia
3.
Sci Rep ; 10(1): 12049, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694604

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive and heterogeneous interstitial lung disease of unknown origin with a low survival rate. There are few treatment options available due to the fact that mechanisms underlying disease progression are not well understood, likely because they arise from dysregulation of complex signaling networks spanning multiple tissue compartments. To better characterize these networks, we used systems-focused data-driven modeling approaches to identify cross-tissue compartment (blood and bronchoalveolar lavage) and temporal proteomic signatures that differentiated IPF progressors and non-progressors. Partial least squares discriminant analysis identified a signature of 54 baseline (week 0) blood and lung proteins that differentiated IPF progression status by the end of 80 weeks of follow-up with 100% cross-validation accuracy. Overall we observed heterogeneous protein expression patterns in progressors compared to more homogenous signatures in non-progressors, and found that non-progressors were enriched for proteomic processes involving regulation of the immune/defense response. We also identified a temporal signature of blood proteins that was significantly different at early and late progressor time points (p < 0.0001), but not present in non-progressors. Overall, this approach can be used to generate new hypothesis for mechanisms associated with IPF progression and could readily be translated to other complex and heterogeneous diseases.


Assuntos
Biomarcadores/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Idoso , Biomarcadores/sangue , Proteínas Sanguíneas , Líquido da Lavagem Broncoalveolar , Progressão da Doença , Suscetibilidade a Doenças , Feminino , Expressão Gênica , Humanos , Fibrose Pulmonar Idiopática/etiologia , Fibrose Pulmonar Idiopática/patologia , Masculino , Pessoa de Meia-Idade , Mapeamento de Interação de Proteínas , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA