Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 347
Filtrar
1.
Cancer Discov ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38980802

RESUMO

Chimeric antigen receptor (CAR)-based therapies have pioneered synthetic cellular immunity but remain limited in their long-term efficacy. Emerging data suggest that dysregulated CAR-driven T cell activation causes T cell dysfunction and therapeutic failure. To re-engage the precision of the endogenous T cell response, we designed MHC-independent T cell receptors (miTCRs) by linking antibody variable domains to TCR constant chains. Using predictive modeling, we observed that this standard "cut and paste" approach to synthetic protein design resulted in myriad biochemical conflicts at the hybrid variable-constant domain interface. Through iterative modeling and sequence modifications we developed structure-enhanced miTCRs which significantly improved receptor-driven T cell function across multiple tumor models. We found that 41BB costimulation specifically prolonged miTCR T cell persistence and enabled improved leukemic control in vivo compared to classic CAR T cells. Collectively, we have identified core features of hybrid receptor structure responsible for regulating function.

3.
Blood Adv ; 8(15): 4089-4101, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38843380

RESUMO

ABSTRACT: We have reported the direct repair of the sickle cell mutation in vivo in a disease model using vectorized prime editors after hematopoietic stem cell (HSC) mobilization with granulocyte colony-stimulating factor (G-CSF)/AMD3100. The use of G-CSF for HSC mobilization is a hurdle for the clinical translation of this approach. Here, we tested a G-CSF-free mobilization regimen using WU-106, an inhibitor of integrin α4ß1, plus AMD3100 for in vivo HSC prime editing in sickle cell disease (SCD) mice. Mobilization with WU-106 + AMD3100 in SCD mice was rapid and efficient. In contrast to the G-CSF/AMD3100 approach, mobilization of activated granulocytes and elevation of the key proinflammatory cytokine interleukin-6 in the serum were minimal. The combination of WU-106 + AMD3100 mobilization and IV injection of the prime editing vector together with in vivo selection resulted in ∼23% correction of the SCD mutation in the bone marrow and peripheral blood cells of SCD mice. The treated mice demonstrated phenotypic correction, as reflected by normalized blood parameters and spleen size. Editing frequencies were significantly increased (29%) in secondary recipients, indicating the preferential mobilization/transduction of long-term repopulating HSCs. Using this approach, we found <1% undesired insertions/deletions and no detectable off-target editing at the top-scored potential sites. Our study shows that in vivo transduction to treat SCD can now be done within 2 hours involving only simple IV injections with a good safety profile. The same-day mobilization regimen makes in vivo HSC gene therapy more attractive for resource-poor settings, where SCD does the most damage.


Assuntos
Anemia Falciforme , Terapia Genética , Fator Estimulador de Colônias de Granulócitos , Mobilização de Células-Tronco Hematopoéticas , Animais , Humanos , Camundongos , Anemia Falciforme/terapia , Anemia Falciforme/genética , Benzilaminas , Ciclamos/farmacologia , Ciclamos/uso terapêutico , Modelos Animais de Doenças , Edição de Genes , Terapia Genética/métodos , Fator Estimulador de Colônias de Granulócitos/farmacologia , Mobilização de Células-Tronco Hematopoéticas/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/metabolismo , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/uso terapêutico
5.
Acad Med ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814121

RESUMO

PROBLEM: Several barriers to physicians becoming clinical investigators exist, including inexperience, lack of available mentors, and inconsistent instructive approaches with varying degrees of participation during training. These barriers cause fewer hematology-oncology fellows to pursue academic careers. A consensus is needed on structuring education in clinical investigation paired with active participation in development of a clinical trial guided by a mentor with the goal of increasing fellow interest in clinical research and pursuit of careers in academic medicine. APPROACH: The clinical trial development (CTD) program was initiated at Washington University School of Medicine in St. Louis in 2002 as a hands-on learning experience for hematology and oncology fellows in the design, implementation, and publication of clinical trials. Each fellow was required to identify a mentor and propose at least 1 prospective investigator-initiated clinical trial. OUTCOMES: At the time of data abstraction in July 2023, 118 fellows had participated in the CTD program and initiated protocols in a variety of areas according to their interests. Fellows were included in data abstraction if their fellowship began in 2002 through 2021; the program is ongoing, and the most recent class will graduate in 2024. Disease types were evenly distributed between solid tumor oncology (60 [51%]) or classic and malignant hematology (58 [49%]). Ninety-three fellows (79%) obtained institutional review board approval, and 60 (65%) published their results. Among graduating fellows, 67 (66%) secured an academic faculty appointment. Fellows with institutional review board-approved projects had significantly higher odds of obtaining an academic faculty appointment (odds ratio, 4.96; 95% confidence interval, 1.54, 15.98; P = .007).Next StepsNext steps will be to further evaluate the effect of the mentorship network on early career productivity of trainees that graduate and the feasibility of extending the program to another institution.

6.
bioRxiv ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38798338

RESUMO

Multiple Myeloma (MM) remains incurable despite advances in treatment options. Although tumor subtypes and specific DNA abnormalities are linked to worse prognosis, the impact of immune dysfunction on disease emergence and/or treatment sensitivity remains unclear. We established a harmonized consortium to generate an Immune Atlas of MM aimed at informing disease etiology, risk stratification, and potential therapeutic strategies. We generated a transcriptome profile of 1,149,344 single cells from the bone marrow of 263 newly diagnosed patients enrolled in the CoMMpass study and characterized immune and hematopoietic cell populations. Associating cell abundances and gene expression with disease progression revealed the presence of a proinflammatory immune senescence-associated secretory phenotype in rapidly progressing patients. Furthermore, signaling analyses suggested active intercellular communication involving APRIL-BCMA, potentially promoting tumor growth and survival. Finally, we demonstrate that integrating immune cell levels with genetic information can significantly improve patient stratification.

7.
Blood ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781564

RESUMO

We report on the first-in-human clinical trial using chimeric antigen receptor (CAR) T-cells targeting CD37, an antigen highly expressed in B- and T-cell malignancies (clinicaltrials.gov NCT04136275). Five patients with relapsed or refractory CD37+ lymphoid malignancies were enrolled and infused with autologous CAR-37 T-cells. CAR-37 T-cells expanded in the peripheral blood of all patients and, at peak, comprised >94% of the total lymphocytes in 4/5 patients. Tumor responses were observed in 4/5 patients, with 3 complete responses, 1 mixed response, and 1 patient whose disease progressed rapidly and with relative loss of CD37 expression. Three patients experienced prolonged and severe pancytopenia, and in two of these patients, efforts to ablate CAR-37 T-cells (which were engineered to co-express truncated EGFR) with cetuximab, were unsuccessful. Hematopoiesis was restored in these two patients following allogeneic hematopoietic stem cell transplantation. No other severe, non-hematopoietic toxicities occurred. We investigated the mechanisms of profound pancytopenia and did not observe activation of CAR-37 T-cells in response to hematopoietic stem cells in vitro or hematotoxicity in humanized models. Patients with pancytopenia had sustained high levels of IL-18, with low levels of IL-18 binding protein in their peripheral blood. IL-18 levels were significantly higher in CAR-37-treated patients relative to both cytopenic and non-cytopenic cohorts of CAR-19-treated cohorts of patients. In conclusion, CAR-37 T-cells exhibited anti-tumor activity, with significant CAR expansion and cytokine production. CAR-37 T-cells may be an effective therapy in hematologic malignancies as a bridge to hematopoietic stem cell transplant.

8.
PLoS One ; 19(5): e0300174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38696390

RESUMO

Off-the-shelf immunotherapeutics that suppress tumor growth and provide durable protection against relapse could enhance cancer treatment. We report preclinical studies on a CD33 x CD3 bivalent bispecific diabody, AMV564, that not only suppresses tumor growth, but also facilitates memory responses in a mouse model of acute myelogenous leukemia (AML). Mechanistically, a single 5-day treatment with AMV564 seems to reduce tumor burden by redirection of T cells, providing a time window for allogeneic or other T cells that innately recognize tumor antigens to become activated and proliferate. When the concentration of bispecific becomes negligible, the effector: target ratio has also shifted, and these activated T cells mediate long-term tumor control. To test the efficacy of AMV564 in vivo, we generated a CD33+ MOLM13CG bioluminescent human cell line and optimized conditions needed to control these cells for 62 days in vivo in NSG mice. Of note, not only did MOLM13CG become undetectable by bioluminescence imaging in response to infusion of human T cells plus AMV564, but also NSG mice that had cleared the tumor also resisted rechallenge with MOLM13CG in spite of no additional AMV564 treatment. In these mice, we identified effector and effector memory human CD4+ and CD8+ T cells in the peripheral blood immediately prior to rechallenge that expanded significantly during the subsequent 18 days. In addition to the anti-tumor effects of AMV564 on the clearance of MOLM13CG cells in vivo, similar effects were seen when primary CD33+ human AML cells were engrafted in NSG mice even when the human T cells made up only 2% of the peripheral blood cells and AML cells made up 98%. These studies suggest that AMV564 is a novel and effective bispecific diabody for the targeting of CD33+ AML that may provide long-term survival advantages in the clinic.


Assuntos
Anticorpos Biespecíficos , Complexo CD3 , Memória Imunológica , Leucemia Mieloide Aguda , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico , Animais , Humanos , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/tratamento farmacológico , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/imunologia , Camundongos , Complexo CD3/imunologia , Memória Imunológica/efeitos dos fármacos , Linhagem Celular Tumoral , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos
9.
Transplant Cell Ther ; 30(6): 559-564, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608806

RESUMO

A shortage of transplant and cellular therapy (TCT) physicians is expected given the expansion of TCT indications and the scope of practice of TCT programs in recent years. American Society of Transplantation and Cellular Therapy (ASTCT) conducted a survey of early career transplant physicians and trainees to assess the factors that prompted them to pursue to career in TCT. This was a cross-sectional survey conducted via emails sent to the ASTCT membership. Fifty-nine respondents completed the survey. The vast majority of respondents decided to pursue a career in TCT during their hematology/oncology fellowship (41%), followed by during residency (25%) or medical school (18%), and a majority of them had some exposure to TCT in their clinical training already. The most common reason for choosing to specialize in TCT was interest in the clinical practice of TCT (81%) closely followed by the scientific allure of the field (75%). Most respondents were extremely committed to remaining in this field of practice. We found that those in the field report high levels of satisfaction despite factors that would otherwise predispose them to burnout. A systematic and sustained effort to promote trainee engagement that could result in improved recruitment and retention in the field of TCT is needed. Professional societies in partnership with educational institutions could conduct outreach and help attract trainees from diverse backgrounds.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Médicos , Humanos , Estudos Transversais , Médicos/psicologia , Escolha da Profissão , Masculino , Feminino , Inquéritos e Questionários , Terapia Baseada em Transplante de Células e Tecidos , Adulto , Comitês Consultivos , Sociedades Médicas , Estados Unidos
10.
Molecules ; 29(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675621

RESUMO

Allogeneic hematopoietic cell transplantation (allo-HCT) is a highly effective, well-established treatment for patients with various hematologic malignancies and non-malignant diseases. The therapeutic benefits of allo-HCT are mediated by alloreactive T cells in donor grafts. However, there is a significant risk of graft-versus-host disease (GvHD), in which the donor T cells recognize recipient cells as foreign and attack healthy organs in addition to malignancies. We previously demonstrated that targeting JAK1/JAK2, mediators of interferon-gamma receptor (IFNGR) and IL-6 receptor signaling, in donor T cells using baricitinib and ruxolitinib results in a significant reduction in GvHD after allo-HCT. Furthermore, we showed that balanced inhibition of JAK1/JAK2 while sparing JAK3 is important for the optimal prevention of GvHD. Thus, we have generated novel JAK1/JAK2 inhibitors, termed WU derivatives, by modifying baricitinib. Our results show that WU derivatives have the potential to mitigate GvHD by upregulating regulatory T cells and immune reconstitution while reducing the frequencies of antigen-presenting cells (APCs) and CD80 expression on these APCs in our preclinical mouse model of allo-HCT. In addition, WU derivatives effectively downregulated CXCR3 and T-bet in primary murine T cells. In summary, we have generated novel JAK inhibitors that could serve as alternatives to baricitinib or ruxolitinib.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Pirazóis , Transplante Homólogo , Animais , Camundongos , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/metabolismo , Azetidinas/farmacologia , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/prevenção & controle , Doença Enxerto-Hospedeiro/tratamento farmacológico , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/metabolismo , Janus Quinase 2/metabolismo , Janus Quinase 2/antagonistas & inibidores , Inibidores de Janus Quinases/farmacologia , Camundongos Endogâmicos C57BL , Purinas/farmacologia , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos
11.
bioRxiv ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38405731

RESUMO

Hematopoietic stem cell transplantation (HSCT) conditioning using antibody-drug conjugates (ADC) is a promising alternative to conventional chemotherapy- and irradiation-based conditioning regimens. The drug payload bound to an ADC is a key contributor to its efficacy and potential toxicities; however, a comparison of HSCT conditioning ADCs produced with different toxic payloads has not been performed. Indeed, ADC optimization studies in general are hampered by the inability to produce and screen multiple combinations of antibody and drug payload in a rapid, cost-effective manner. Herein, we used Click chemistry to covalently conjugate four different small molecule payloads to streptavidin; these streptavidin-drug conjugates can then be joined to any biotinylated antibody to produce stable, indirectly conjugated ADCs. Evaluating CD45-targeted ADCs produced with this system, we found the pyrrolobenzodiazepine (PBD) dimer SGD-1882 was the most effective payload for targeting mouse and human hematopoietic stem cells (HSCs) and acute myeloid leukemia cells. In murine syngeneic HSCT studies, a single dose of CD45-PBD enabled near-complete conversion to donor hematopoiesis. Finally, human CD45-PBD provided significant antitumor benefit in a patient-derived xenograft model of acute myeloid leukemia. As our streptavidin-drug conjugates were generated in-house with readily accessible equipment, reagents, and routine molecular biology techniques, we anticipate this flexible platform will facilitate the evaluation and optimization of ADCs for myriad targeting applications.

13.
Blood Adv ; 8(3): 513-522, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-37871306

RESUMO

ABSTRACT: Outcomes in patients with relapsed diffuse large B-cell lymphoma (DLBCL) who undergo autologous stem cell transplant (auto-SCT) are poor. Blinatumomab is a CD3/CD19 bispecific T-cell engager that directs cytotoxic T cells to CD19+ cells. Here, we performed a pilot study of blinatumomab consolidation after auto-SCT for 14 patients with DLBCL or transformed follicular lymphoma. All patients underwent standard-of-care auto-SCT with carmustine, etoposide, cytarabine, and melphalan (BEAM) conditioning followed by 1 cycle (4 weeks continuous infusion) of blinatumomab consolidation starting at day 42 after auto-SCT. All 14 patients treated on study completed BEAM auto-SCT and 1 cycle of posttransplant blinatumomab. Five patients developed grade 1 cytokine release syndrome (CRS), with no grade 2 or higher CRS. Immune effector cell-associated neurotoxicity syndrome was not observed. Patients were followed up for 3 years after auto-SCT, with median follow-up of 37 (range, 12-65) months. One-hundred days after auto-SCT (1 month after blinatumomab consolidation), 12 patients (86%) had achieved complete remission. At 1 year after auto-SCT, 7 patients (50%) remained in CR, and 1 patient had died of progressive disease. Patients who relapsed had a lower CD8:CD4 T-cell ratio before starting blinatumomab than patients who remained in remission. This pilot study demonstrates blinatumomab consolidation after auto-SCT is safe and well tolerated. Strategies to increase the CD8:CD4 ratio and use additional cycles of consolidation in a larger randomized trial are needed to confirm the efficacy of consolidation with blinatumomab after auto-SCT. This trial was registered at www.clinicaltrials.gov as #NCT03072771.


Assuntos
Anticorpos Biespecíficos , Transplante de Células-Tronco Hematopoéticas , Linfoma Difuso de Grandes Células B , Linfoma não Hodgkin , Humanos , Projetos Piloto , Indução de Remissão , Transplante Autólogo , Recidiva Local de Neoplasia , Transplante de Células-Tronco
15.
Nature ; 623(7986): 432-441, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914932

RESUMO

Chromatin accessibility is essential in regulating gene expression and cellular identity, and alterations in accessibility have been implicated in driving cancer initiation, progression and metastasis1-4. Although the genetic contributions to oncogenic transitions have been investigated, epigenetic drivers remain less understood. Here we constructed a pan-cancer epigenetic and transcriptomic atlas using single-nucleus chromatin accessibility data (using single-nucleus assay for transposase-accessible chromatin) from 225 samples and matched single-cell or single-nucleus RNA-sequencing expression data from 206 samples. With over 1 million cells from each platform analysed through the enrichment of accessible chromatin regions, transcription factor motifs and regulons, we identified epigenetic drivers associated with cancer transitions. Some epigenetic drivers appeared in multiple cancers (for example, regulatory regions of ABCC1 and VEGFA; GATA6 and FOX-family motifs), whereas others were cancer specific (for example, regulatory regions of FGF19, ASAP2 and EN1, and the PBX3 motif). Among epigenetically altered pathways, TP53, hypoxia and TNF signalling were linked to cancer initiation, whereas oestrogen response, epithelial-mesenchymal transition and apical junction were tied to metastatic transition. Furthermore, we revealed a marked correlation between enhancer accessibility and gene expression and uncovered cooperation between epigenetic and genetic drivers. This atlas provides a foundation for further investigation of epigenetic dynamics in cancer transitions.


Assuntos
Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias , Humanos , Hipóxia Celular , Núcleo Celular , Cromatina/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Epigênese Genética/genética , Transição Epitelial-Mesenquimal , Estrogênios/metabolismo , Perfilação da Expressão Gênica , Proteínas Ativadoras de GTPase/metabolismo , Metástase Neoplásica , Neoplasias/classificação , Neoplasias/genética , Neoplasias/patologia , Sequências Reguladoras de Ácido Nucleico/genética , Análise de Célula Única , Fatores de Transcrição/metabolismo
16.
Leukemia ; 37(12): 2448-2456, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37798328

RESUMO

T-cell malignancies are associated with frequent relapse and high morbidity, which is partly due to the lack of effective or targeted treatment options. To broaden the use of CAR-T cells in pan T-cell malignancies, we developed an allogeneic "universal" CD2-targeting CAR-T cell (UCART2), in which the CD2 antigen is deleted to prevent fratricide, and the T-cell receptor is removed to prevent GvHD. UCART2 demonstrated efficacy against T-ALL and CTCL and prolonged the survival of tumor-engrafted NSG mice in vivo. To evaluate the impact of CD2 on CAR-T function, we generated CD19 CAR-T cells (UCART19) with or without CD2 deletion, single-cell secretome analysis revealed that CD2 deletion in UCART19 reduced frequencies of the effector cytokines (Granzyme-B and IFN-γ). We also observed that UCART19ΔCD2 had reduced anti-tumor efficacy compared to UCART19 in a CD19+NALM6 xenograft model. Of note is that the reduced efficacy resulting from CD2 deletion was reversed when combined with rhIL-7-hyFc, a long-acting recombinant human interleukin-7. Treatment with rhIL-7-hyFc prolonged UCART2 persistence and increased survival in both the tumor re-challenge model and primary patient T-ALL model in vivo. Together, these data suggest that allogeneic fratricide-resistant UCART2, in combination with rhIL-7-hyFc, could be a suitable approach for treating T-cell malignancies.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores de Antígenos Quiméricos , Humanos , Camundongos , Animais , Linfócitos T , Receptores de Antígenos Quiméricos/genética , Recidiva Local de Neoplasia , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T , Antígenos CD19
17.
Front Immunol ; 14: 1264496, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744381

RESUMO

Solid organ transplant represents a potentially lifesaving procedure for patients suffering from end-stage heart, lung, liver, and kidney failure. However, rejection remains a significant source of morbidity and immunosuppressive medications have significant toxicities. Janus kinase (JAK) inhibitors are effective immunosuppressants in autoimmune diseases and graft versus host disease after allogeneic hematopoietic cell transplantation. Here we examine the role of JAK inhibition in preclinical fully major histocompatibility mismatched skin and heart allograft models. Baricitinib combined with cyclosporine A (CsA) preserved fully major histocompatibility mismatched skin grafts for the entirety of a 111-day experimental period. In baricitinib plus CsA treated mice, circulating CD4+T-bet+ T cells, CD8+T-bet+ T cells, and CD4+FOXP3+ regulatory T cells were reduced. Single cell RNA sequencing revealed a unique expression profile in immune cells in the skin of baricitinib plus CsA treated mice, including decreased inflammatory neutrophils and increased CCR2- macrophages. In a fully major histocompatibility mismatched mismatched heart allograft model, baricitinib plus CsA prevented graft rejection for the entire 28-day treatment period compared with 9 days in controls. Our findings establish that the combination of baricitinib and CsA prevents rejection in allogeneic skin and heart graft models and supports the study of JAK inhibitors in human solid organ transplantation.


Assuntos
Ciclosporina , Transplante de Coração , Humanos , Animais , Camundongos , Ciclosporina/uso terapêutico , Rejeição de Enxerto/prevenção & controle , Transplante de Coração/efeitos adversos , Sulfonamidas
18.
Transplant Cell Ther ; 29(11): 699.e1-699.e9, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37597685

RESUMO

Graft-versus-host disease (GVHD) is a major complication after allogeneic hematopoietic cell transplantation (allo-HCT). The hypomethylating agent azacitidine (AZA) has been shown to be effective in preclinical and clinical studies for the prevention of acute GVHD (aGVHD). We sought to determine the maximum tolerated dose (MTD) of AZA when given on days 1 to 5 of a 28-day cycle for 4 cycles, starting on day +7 after allo-HCT, as well as its impact on aGVHD and chronic GVHD (cGVHD), relapse, and overall survival (OS) in patients undergoing matched unrelated donor allo-HCT. This study was a single-arm, single-center, open-label phase I-II study with a total of 15 and 38 patients enrolled in the phase I and II portions of the trial, respectively. A standard 3+3 study design was used in phase I, and all patients in phase II received AZA at the MTD determined in phase I. The MTD of AZA starting at day +7 post-transplantation was 45 mg/m2. Phase II of the study was halted after enrolling 38 of the planned 46 patients following an interim analysis that suggested futility. Overall, AZA at 45 mg/m2 exhibited a side effect profile consistent with prior reports and had a minimal impact on engraftment. The cumulative incidence of clinically significant aGVHD by day +180 was 39.9% (95% confidence interval [CI], 22% to 53.7%). The incidence of all-grade cGVHD was 61.4% (95% CI, 40.3% to 75%). At 1 year, OS was 73.7% (95% CI, 60.9% to 89.1%), and the disease relapse rate was 11.4% (95% CI, .2% to 21.3%). Our results suggest that early post-allo-HCT AZA has limited efficacy in preventing aGVHD and cGVHD but could have a beneficial effect in preventing disease relapse.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Recidiva , Doadores não Relacionados
19.
Blood Adv ; 7(20): 6009-6022, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37399471

RESUMO

Multiple myeloma (MM), a malignancy of mature plasma cells, remains incurable. B-cell maturation antigen (BCMA) is the lead protein target for chimeric antigen receptor (CAR) therapy because of its high expression in most MM, with limited expression in other cell types, resulting in favorable on-target, off tumor toxicity. The response rate to autologous BCMA CAR-T therapy is high; however, it is not curative and is associated with risks of cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome. Outcomes in patients treated with BCMA CAR-T cells (CAR-Ts) may improve with allogeneic CAR T-cell therapy, which offer higher cell fitness and reduced time to treatment. However, to prevent the risk of graft-versus-host disease (GVHD), allogenic BCMA CAR-Ts require genetic deletion of the T-cell receptor (TCR), which has potential for unexpected functional or phenotype changes. Invariant natural killer T cells (iNKTs) have an invariant TCR that does not cause GVHD and, as a result, can be used in an allogeneic setting without the need for TCR gene editing. We demonstrate significant anti-myeloma activity of BCMA CAR-iNKTs in a xenograft mouse model of myeloma. We found that a long-acting interleukin-7 (IL-7), rhIL-7-hyFc, significantly prolonged survival and reduced tumor burden in BCMA CAR-iNKT-treated mice in both primary and re-challenge settings. Furthermore, in CRS in vitro assays, CAR-iNKTs induced less IL-6 than CAR-Ts, suggesting a reduced likelihood of CAR-iNKT therapy to induce CRS in patients. These data suggest that BCMA CAR-iNKTs are potentially a safer, effective alternative to BCMA CAR-Ts and that BCMA CAR-iNKT efficacy is further potentiated with rhIL-7-hyFc.


Assuntos
Doença Enxerto-Hospedeiro , Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Mieloma Múltiplo/genética , Interleucina-7 , Receptores de Antígenos Quiméricos/metabolismo , Antígeno de Maturação de Linfócitos B , Receptores de Antígenos de Linfócitos T/genética , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA