Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 8728, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253753

RESUMO

Many factors regulate scar formation, which yields a modified extracellular matrix (ECM). Among ECM components, microfibril-associated proteins have been minimally explored in the context of skin wound repair. Microfibril-associated protein 5 (MFAP5), a small 25 kD serine and threonine rich microfibril-associated protein, influences microfibril function and modulates major extracellular signaling pathways. Though known to be associated with fibrosis and angiogenesis in certain pathologies, MFAP5's role in wound healing is unknown. Using a murine model of skin wound repair, we found that MFAP5 is significantly expressed during the proliferative and remodeling phases of healing. Analysis of existing single-cell RNA-sequencing data from mouse skin wounds identified two fibroblast subpopulations as the main expressors of MFAP5 during wound healing. Furthermore, neutralization of MFAP5 in healing mouse wounds decreased collagen deposition and refined angiogenesis without altering wound closure. In vitro, recombinant MFAP5 significantly enhanced dermal fibroblast migration, collagen contractility, and expression of pro-fibrotic genes. Additionally, TGF-ß1 increased MFAP5 expression and production in dermal fibroblasts. Our findings suggest that MFAP5 regulates fibroblast function and influences scar formation in healing wounds. Our work demonstrates a previously undescribed role for MFAP5 and suggests that microfibril-associated proteins may be significant modulators of wound healing outcomes and scarring.


Assuntos
Cicatriz , Proteínas Contráteis , Peptídeos e Proteínas de Sinalização Intercelular , Cicatrização , Animais , Camundongos , Cicatriz/patologia , Fibroblastos/metabolismo , Fibrose , Microfibrilas , Pele/metabolismo , Cicatrização/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas Contráteis/metabolismo
2.
Front Pharmacol ; 14: 1087924, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36713846

RESUMO

Introduction: Chronic, non-healing skin wounds such as diabetic foot ulcers (DFUs) are common in patients with type 2 diabetes mellitus (T2DM) and often result in limb amputation and even death. However, mechanisms by which T2DM and inflammation negatively impact skin wound healing remains poorly understood. Here we investigate a mechanism by which an excessive level of chemokine CCL28, through its receptor CCR10, impairs wound healing in patients and mice with T2DM. Methods & Results: Firstly, a higher level of CCL28 was observed in skin and plasma in both patients with T2DM, and in obesity-induced type 2 diabetic db/db mice. Compared with WT mice, adipose tissue from db/db mice released 50% more CCL28, as well as 2- to 3-fold more IL-1ß, IL-6, and TNF-α, and less VEGF, as determined by ELISA measurements. Secondly, overexpression of CCL28 with adenovirus (Adv-CCL28) caused elevation of proinflammatory cytokines as well as CCR10 expression and also reduced eNOS expression in the dorsal skin of WT mice as compared with control Adv. Thirdly, topical application of neutralizing anti-CCL28 Ab dose-dependently accelerated wound closure and eNOS expression, and decreased IL-6 level, with an optimal dose of 1 µg/wound. In addition, mRNA levels of eNOS and anti-inflammatory cytokine IL-4 were increased as shown by real-time RT-PCR. The interaction between eNOS and CCR10 was significantly reduced in diabetic mouse wounds following application of the optimal dose of anti-CCL28 Ab, and eNOS expression increased. Finally, enhanced VEGF production and increased subdermal vessel density as indicated by CD31 immunostaining were also observed with anti-CCL28 Ab. Discussion: Taken together, topical application of neutralizing anti-CCL28 Ab improved dorsal skin wound healing by reducing CCR10 activation and inflammation in part by preventing eNOS downregulation, increasing VEGF production, and restoring angiogenesis. These results indicate anti-CCL28 Ab has significant potential as a therapeutic strategy for treatment of chronic non-healing diabetic skin wounds such as DFUs.

3.
Diabetes ; 71(10): 2166-2180, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35899992

RESUMO

Chronic, nonhealing skin wounds, such as diabetic foot ulcers (DFUs), are common in patients with type 2 diabetes. Here, we investigated the role of chemokine (C-C motif) ligand 28 (CCL28) and its receptor C-C chemokine receptor type 10 (CCR10) in downregulation of endothelial nitric (NO) oxide synthase (eNOS) in association with delayed skin wound healing in the db/db mouse model of type 2 diabetes. We observed reduced eNOS expression and elevated CCL28/CCR10 levels in dorsal skin of db/db mice and subdermal leg biopsy specimens from human subjects with type 2 diabetes. Further interrogation revealed that overexpression of CCR10 reduced eNOS expression, NO bioavailability, and tube formation of human dermal microvascular endothelial cells (HDMVECs) in vitro, which was recapitulated in mouse dorsal skin. In addition, incubation of HDMVECs with CCL28 led to internalization of the CCR10/eNOS complex and colocalization with lysosome-associated membrane protein 1. Finally, topical application of myristoylated CCR10 binding domain 7 amino acid (Myr-CBD7) peptide prevented CCR10-eNOS interaction and subsequent eNOS downregulation, enhanced eNOS/NO levels, eNOS/VEGF-R2+ microvessel density, and blood perfusion, reduced inflammatory cytokine levels, and importantly, decreased wound healing time in db/db mice. Thus, endothelial cell CCR10 activation in genetically obese mice with type 2 diabetes promotes eNOS depletion and endothelial dysfunction, and targeted disruption of CCR10/eNOS interaction improves wound healing.


Assuntos
Diabetes Mellitus Tipo 2 , Receptores de Quimiocinas , Aminoácidos/metabolismo , Animais , Quimiocinas/metabolismo , Quimiocinas CC , Diabetes Mellitus Tipo 2/complicações , Modelos Animais de Doenças , Regulação para Baixo , Células Endoteliais/metabolismo , Humanos , Ligantes , Proteínas de Membrana Lisossomal/metabolismo , Camundongos , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Obesidade/genética , Óxidos/metabolismo , Receptores CCR10 , Receptores de Quimiocinas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização
4.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477945

RESUMO

Macrophages are prominent cells in normally healing adult skin wounds, yet their exact functions and functional significance to healing outcomes remain enigmatic. Many functional attributes are ascribed to wound macrophages, including host defense and support of the proliferation of new tissue to replace that lost by injury. Indeed, the depletion of macrophages is unmistakably detrimental to normal skin healing in adult mammals. Yet in certain systems, dermal wounds seem to heal well with limited or even no functional macrophages, creating an apparent paradox regarding the function of this cell in wounds. Recent advances in our understanding of wound macrophage phenotypes, along with new information about cellular plasticity in wounds, may provide some explanation for the apparently contradictory findings and suggest new paradigms regarding macrophage function in wounds. Continued study of this remarkable cell is needed to develop effective therapeutic options to improve healing outcomes.


Assuntos
Macrófagos/fisiologia , Cicatrização/fisiologia , Adulto , Animais , Plasticidade Celular/imunologia , Plasticidade Celular/fisiologia , Humanos , Inflamação/etiologia , Inflamação/patologia , Mamíferos , Pele/imunologia , Pele/patologia , Pele/fisiopatologia
5.
Wound Repair Regen ; 28(5): 684-695, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32585760

RESUMO

Scar forming wounds are often characterized by higher levels of vascularity than non-scarring wounds and normal skin, and inhibition of angiogenesis has been shown to inhibit scar formation in some model systems. The rabbit ear hypertrophic scar (HS) model has been widely used to study the mechanisms that underlie the development of HS as well as the effectiveness of various treatments. Although the rabbit ear HS model is well characterized in terms of scar formation, the rate and level of angiogenesis has not been investigated in this model, and the cause-effect relationship between angiogenesis and rabbit HSs has not been examined. In the current study, full-thickness excisional wounds were created on the ventral side of New Zealand White rabbit ears to induce HS formation, and the dynamic pattern of angiogenesis and the expression of angiogenic regulatory factors were examined over time. Blood vessel density was found to peak at 2.7% on day 14 post-wounding, decreasing to 1.7% by day 28. mRNA levels of the proangiogenic factor VEGF-A peaked at day 14, while the expression of the antiangiogenic factors pigment epithelium-derived factor (PEDF) and thrombospondin 1 (TSP1) peaked at day 28 post-wounding. To examine whether inhibition of angiogenesis influences HS formation in this model, wounds were treated with exogenous soluble antiangiogenic agents including recombinant PEDF (rPEDF) and a functional PEDF peptide (PEDF-335). rPEDF and PEDF-335 were administered intradermally from day 4 post-wounding every 3 days until day 19. Intradermal injection of rPEDF or PEDF-335 both led to decreased angiogenesis and decreased collagen deposition at the wound site. The results support the utility of antiangiogenic therapies, including rPEDF/PEDF-335, as a potential new strategy for the prevention or treatment of HSs.


Assuntos
Inibidores da Angiogênese/farmacologia , Cicatriz Hipertrófica/metabolismo , Colágeno/metabolismo , Proteínas do Olho/farmacologia , Neovascularização Patológica/prevenção & controle , Fatores de Crescimento Neural/farmacologia , Serpinas/farmacologia , Animais , Modelos Animais de Doenças , Orelha Externa/lesões , Orelha Externa/metabolismo , Coelhos
6.
Am J Physiol Cell Physiol ; 318(4): C762-C776, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31995410

RESUMO

Hypercholesterolemia is a major risk factor for adverse cardiovascular outcomes, but its effect on angiogenesis and wound healing is not well understood. In this study, using a combination of mass spectrometry and laurdan two-photon imaging, we show that elevated levels of low-density lipoprotein (LDL), like those seen in hypercholesterolemic patients, lead to an increase in both free cholesterol and cholesterol esters, as well as increase in lipid order of endothelial cell membranes. Notably, these effects are distinct and opposite to the lack of cholesterol loading and the disruption of lipid order observed in our earlier studies in response to oxidized LDL (oxLDL). The same pathological level of LDL leads to a significant inhibition of endothelial proliferation and cell cycle arrest in G2/M phase, whereas oxLDL enhances endothelial proliferation in S phase of the cycle. LDL but not oxLDL suppresses the expression of vascular endothelial growth factor receptor-2 while enhancing the expression of vascular endothelial growth factor (VEGF). Furthermore, we show that aged (8-10 mo) hypercholesterolemic apolipoprotein E-deficient (ApoE-/-) mice display delayed wound closure compared with age-matched C57/BL6 wild-type controls following a skin punch biopsy. The delay in wound healing is associated with a decreased expression of cluster of differentiation 31 platelet endothelial cell adhesion molecule endothelial marker and decreased angiogenesis within the wound bed. Furthermore, decreased endothelial responsiveness to the growth factors VEGF and basic fibroblast growth factor is observed in ApoE-/- mice in Matrigel plugs and in Matrigels with high levels of LDL in wild-type mice. We propose that plasma hypercholesterolemia is antiangiogenic due to elevated levels of LDL.


Assuntos
Colesterol/metabolismo , Células Endoteliais/metabolismo , Lipoproteínas LDL/metabolismo , Cicatrização/fisiologia , Animais , Células Cultivadas , Colágeno , Combinação de Medicamentos , Hipercolesterolemia/sangue , Hipercolesterolemia/metabolismo , Laminina , Camundongos , Neovascularização Patológica/metabolismo , Proteoglicanas , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Adv Wound Care (New Rochelle) ; 9(1): 1-8, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31871825

RESUMO

Objective: The healing of skin wounds is typified by a pattern of robust angiogenesis followed by vascular regression. Pigment epithelium-derived factor (PEDF), a recognized endogenous antiangiogenic protein, regulates vascular regression in resolving wounds through an unknown receptor. Among the multiple receptors for PEDF that have been identified, low-density lipoprotein receptor-related protein 6 (Lrp6) has been described as a regulator of angiogenesis in multiple systems. The purpose of the current study was to determine if the Lrp6 receptor plays a role in vessel regression in wounds. Approach: Excisional skin wounds were prepared on C57BL/6 mice. RT-PCR and immunoblots were performed to measure Lrp6 expression over a time course of wound healing. Immunohistochemistry was performed to localize Lrp6 in both recombinant PEDF (rPEDF)-treated and control wounds. To examine whether Lrp6 is critical to the regulation of capillary regression in vivo, wounds were treated with Lrp6 siRNA to minimize its presence in wounds. Immunohistochemistry for CD31 was performed to quantify blood vessel density. Results: PCR and immunoblots revealed significant increases in Lrp6 expression during the vascular regression phase of wound healing. Lrp6 was found to colocalize with CD31+ endothelial cells in wounds. The addition of rPEDF to wounds caused an increase in Lrp6-CD31+ endothelial cell colocalization. Inhibition of Lrp6 by siRNA impeded the vascular regression phase of healing. Innovation: This study is the first to demonstrate an association between Lrp6 and vessel regression in wound healing. Conclusion: Lrp6 is expressed in wounds in a temporal and spatial manner that suggests it may be a receptor for PEDF during vascular regression. PEDF increases Lrp6 expression in the wound vasculature, and inhibition of Lrp6 blocked vascular regression in wounds. The results suggest that Lrp6 is important to vascular regression in wounds, possibly through direct interaction with PEDF.


Assuntos
Proteínas do Olho/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Rarefação Microvascular/metabolismo , Neovascularização Patológica/metabolismo , Fatores de Crescimento Neural/metabolismo , Serpinas/metabolismo , Cicatrização/genética , Animais , Capilares/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Proteínas do Olho/administração & dosagem , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural/administração & dosagem , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , Serpinas/administração & dosagem , Pele/irrigação sanguínea , Pele/metabolismo , Pele/patologia
8.
Int J Mol Sci ; 20(15)2019 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-31357577

RESUMO

Wounds within the oral mucosa are known to heal more rapidly than skin wounds. Recent studies suggest that differences in the microRNAome profiles may underlie the exceptional healing that occurs in oral mucosa. Here, we test whether skin wound-healing can be accelerating by increasing the levels of oral mucosa-specific microRNAs. A panel of 57 differentially expressed high expresser microRNAs were identified based on our previously published miR-seq dataset of paired skin and oral mucosal wound-healing [Sci. Rep. (2019) 9:7160]. These microRNAs were further grouped into 5 clusters based on their expression patterns, and their differential expression was confirmed by TaqMan-based quantification of LCM-captured epithelial cells from the wound edges. Of these 5 clusters, Cluster IV (consisting of 8 microRNAs, including miR-31) is most intriguing due to its tissue-specific expression pattern and temporal changes during wound-healing. The in vitro functional assays show that ectopic transfection of miR-31 consistently enhanced keratinocyte proliferation and migration. In vivo, miR-31 mimic treatment led to a statistically significant acceleration of wound closure. Our results demonstrate that wound-healing can be enhanced in skin through the overexpression of microRNAs that are highly expressed in the privileged healing response of the oral mucosa.


Assuntos
Expressão Gênica , MicroRNAs/genética , Mucosa Bucal/metabolismo , Pele/metabolismo , Cicatrização/genética , Animais , Biologia Computacional/métodos , Células Epiteliais/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Camundongos
9.
Sci Rep ; 8(1): 11142, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30042381

RESUMO

Although the inflammatory and proliferative phases of wound healing have been well described, much less is known about how healing resolves. During the resolution phase, pruning of the capillary bed and maturation of capillaries occurs and influences the final strength and fidelity of the wound. PEDF, an endogenous anti-angiogenic factor, is produced in wounds and may contribute to the removal of capillaries during wound resolution. This study utilized PEDF-/- mice to examine how PEDF influences wound angiogenesis, particularly capillary density and permeability. The absence of PEDF led to transient changes in dermal wound closure and collagen content, but caused substantial changes in wound angiogenesis. Compared to wild type (WT) mice, wounds from PEDF-/- mice exhibited a significant increase in capillaries during the proangiogenic phase of repair, and a delay in capillary pruning. Conversely, the addition of rPEDF caused a reduction in capillary density within skin wounds in WT mice. In vitro studies showed that PEDF inhibited migration and tube formation by dermal microvascular endothelial cells, and caused a decrease in the expression of VEGFR2, VCAM-1, and other surface receptors. The results demonstrate that loss of PEDF causes a distinctive wound healing phenotype that is characterized by increased angiogenesis and delayed resolution. The findings suggest that PEDF most likely acts through multiple mechanisms to regulate proper capillary refinement in wounds.


Assuntos
Proteínas do Olho/metabolismo , Proteínas do Olho/farmacologia , Neovascularização Fisiológica/fisiologia , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Serpinas/metabolismo , Serpinas/farmacologia , Cicatrização/fisiologia , Análise de Variância , Animais , Apoptose/efeitos dos fármacos , Capilares/metabolismo , Permeabilidade Capilar/fisiologia , Adesão Celular/efeitos dos fármacos , Moléculas de Adesão Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Colágeno/metabolismo , Células Endoteliais/fisiologia , Proteínas do Olho/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica/efeitos dos fármacos , Fatores de Crescimento Neural/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Serpinas/genética , Pele/irrigação sanguínea , Pele/citologia , Pele/lesões , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
10.
Methods Mol Biol ; 1733: 225-237, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29435937

RESUMO

MicroRNAs are ~22 nucleotide-long noncoding RNAs influencing many cellular processes (including wound healing) by their regulatory functions on gene expression. The ability to analyze microRNA in different cells at the wound site is essential for understanding the critical role(s) of microRNA during various phases of wound healing. Laser capture micro-dissection (LCM) is an effective method to distinguish between relevant and non-relevant cells or tissues and enables the researcher to obtain homogeneous, ultra-pure samples from heterogeneous starting material. We present here our protocol for procuring epithelial cells from a mouse wound healing model using a Leica LMD7000 Laser Microdissection system, as well as the RNA isolation and downstream microRNA analysis. Using this method, researchers can selectively and routinely analyze regions of interest down to single cells to obtain results that are relevant, reproducible, and specific.


Assuntos
Epitélio/metabolismo , MicroRNAs/genética , Cicatrização/genética , Animais , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Microdissecção e Captura a Laser , Camundongos , MicroRNAs/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real
11.
Wound Repair Regen ; 25(3): 366-376, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28370678

RESUMO

Mac-1 (CD11b/CD18) is a macrophage receptor that plays several critical roles in macrophage recruitment and activation. Because macrophages are essential for proper wound healing, the impact of Mac-1 deficiency on wound healing is of significant interest. Prior studies have shown that Mac-1-/- mice exhibit deficits in healing, including delayed wound closure in scalp and ear wounds. This study examined whether Mac-1 deficiency influences wound healing in small excisional and incisional skin wounds. Three millimeter diameter full thickness excisional wounds and incisional wounds were prepared on the dorsal skin of Mac-1 deficient (Mac-1-/- ) and wild type (WT) mice, and wound healing outcomes were examined. Mac-1 deficient mice exhibited a normal rate of wound closure, generally normal levels of total collagen, and nearly normal synthesis and distribution of collagens I and III. In incisional wounds, wound breaking strength was similar for Mac-1-/- and WT mice. Wounds of Mac-1 deficient mice displayed normal total macrophage content, although macrophage phenotype markers were skewed as compared to WT. Interestingly, amounts of TGF-ß1 and its downstream signaling molecules, SMAD2 and SMAD3, were significantly decreased in the wounds of Mac-1 deficient mice compared to WT. The results suggest that Mac-1 deficiency has little impact on the healing of small excisional and incisional wounds. Moreover, the findings demonstrate that the effect of single genetic deficiencies on wound healing may markedly differ among wound models. These conclusions have implications for the interpretation of the many prior studies that utilize a single model system to examine wound healing outcomes in genetically deficient mice.


Assuntos
Antígeno de Macrófago 1/genética , Macrófagos/metabolismo , Cicatrização/fisiologia , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia , Animais , Colágeno/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ferimentos e Lesões/genética
12.
Mol Pharm ; 13(7): 2148-54, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-26881299

RESUMO

Ever since proangiogenic growth factors have been used as a vascular medicine to treat tissue ischemia, efforts have been increasingly made to develop a method to enhance efficacy of growth factors in recreating microvascular networks, especially at low dose. To this end, we hypothesized that polysaccharides substituted with sulfate groups would amplify growth factor receptor activation and stimulate phenotypic activities of endothelial cells involved in neovascularization. We examined this hypothesis by modifying alginate with a controlled number of sulfates and using it to derive a complex with vascular endothelial growth factor (VEGF), as confirmed with fluorescence resonance energy transfer (FRET) assay. Compared with the bare VEGF and with a mixture of VEGF and unmodified alginates, the VEGF complexed with alginate sulfates significantly reduced the dissociation rate with the VEGFR-2, elevated VEGFR-2 phosphorylation level, and increased the number of endothelial sprouts in vitro. Furthermore, the VEGF-alginate sulfate complex improved recovery of perfusion in an ischemic hindlimb of a mouse due to the increase of the capillary density. Overall, this study not only demonstrates an important cofactor of VEGF but also uncovers an underlying mechanism by which the cofactor mitigates the VEGF-induced signaling involved in the binding kinetics and activation of VEGFR. We therefore believe that the results of this study will be highly useful in improving the therapeutic efficacy of various growth factors and expediting their uses in clinical treatments of wounds and tissue defects.


Assuntos
Alginatos/farmacologia , Sulfatos/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Capilares/efeitos dos fármacos , Células Cultivadas , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/farmacologia , Membro Posterior/efeitos dos fármacos , Membro Posterior/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Isquemia/tratamento farmacológico , Isquemia/metabolismo , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
PLoS One ; 11(1): e0146451, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26752054

RESUMO

Wound healing in a pre-existing Th2-dominated skin milieu was assessed by using an epidermal specific interleukin-4 (IL-4) transgenic (Tg) mouse model, which develops a pruritic inflammatory skin condition resembling human atopic dermatitis. Our results demonstrated that IL-4 Tg mice had delayed wound closure and re-epithelialization even though these mice exhibited higher degrees of epithelial cell proliferation. Wounds in IL-4 Tg mice also showed a marked enhancement in expression of inflammatory cytokines/chemokines, elevated infiltration of inflammatory cells including neutrophils, macrophages, CD3+ lymphocytes, and epidermal dendritic T lymphocytes. In addition, these mice exhibited a significantly higher level of angiogenesis as compared to wild type mice. Furthermore, wounds in IL-4 Tg mice presented with larger amounts of granulation tissue, but had less expression and deposition of collagen. Taken together, an inflamed skin condition induced by IL-4 has a pronounced negative influence on the healing process. Understanding more about the pathogenesis of wound healing in a Th2- dominated environment may help investigators explore new potential therapeutic strategies.


Assuntos
Dermatite Atópica/fisiopatologia , Epiderme/metabolismo , Interleucina-4/metabolismo , Animais , Citocinas/metabolismo , Dermatite Atópica/genética , Feminino , Tecido de Granulação/metabolismo , Interleucina-4/genética , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neutrófilos/metabolismo , Reepitelização/genética , Reepitelização/fisiologia , Linfócitos T/metabolismo , Cicatrização/genética , Cicatrização/fisiologia
14.
Am J Physiol Heart Circ Physiol ; 309(5): H812-26, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26163443

RESUMO

During dermal wound repair, hypoxia-driven proliferation results in dense but highly permeable, disorganized microvascular networks, similar to those in solid tumors. Concurrently, activated dermal fibroblasts generate an angiopermissive, provisional extracellular matrix (ECM). Unlike cancers, wounds naturally resolve via blood vessel regression and ECM maturation, which are essential for reestablishing tissue homeostasis. Mechanisms guiding wound resolution are poorly understood; one candidate regulator is pigment epithelium-derived factor (PEDF), a secreted glycoprotein. PEDF is a potent antiangiogenic in models of pathological angiogenesis and a promising cancer and cardiovascular disease therapeutic, but little is known about its physiological function. To examine the roles of PEDF in physiological wound repair, we used a reproducible model of excisional skin wound healing in BALB/c mice. We show that PEDF is abundant in unwounded and healing skin, is produced primarily by dermal fibroblasts, binds to resident microvascular endothelial cells, and accumulates in dermal ECM and epidermis. PEDF transcript and protein levels were low during the inflammatory and proliferative phases of healing but increased in quantity and colocalization with microvasculature during wound resolution. Local antibody inhibition of endogenous PEDF delayed vessel regression and collagen maturation during the remodeling phase. Treatment of wounds with intradermal injections of exogenous, recombinant PEDF inhibited nascent angiogenesis by repressing endothelial proliferation, promoted vascular integrity and function, and increased collagen maturity. These results demonstrate that PEDF contributes to the resolution of healing wounds by causing regression of immature blood vessels and stimulating maturation of the vascular microenvironment, thus promoting a return to tissue homeostasis after injury.


Assuntos
Cicatriz , Proteínas do Olho/metabolismo , Fatores de Crescimento Neural/metabolismo , Reepitelização , Serpinas/metabolismo , Animais , Linhagem Celular , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/farmacologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Serpinas/genética , Serpinas/farmacologia , Pele/efeitos dos fármacos , Pele/metabolismo
15.
Exp Dermatol ; 23(6): 436-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24698153

RESUMO

Pigment epithelium-derived factor (PEDF) is a multifunctional factor with potent anti-angiogenic activity that may play a role in skin homoeostasis and wound healing. Analysis of PEDF levels demonstrated that PEDF levels are high in normal skin but quite low in early wounds. As previous studies have suggested that keratinocytes can produce PEDF, we investigated how conditions that mimic those found at sites of injury influence PEDF production by keratinocytes in vitro. Both injury by mechanical disruption (scratch assay) and treatment of human keratinocytes with inflammatory cytokines (IL-1ß, IL-6 and TNF-α) inhibited PEDF expression. We next examined how PEDF affects keratinocyte functions that are important in tissue repair. Treatment of keratinocytes with exogenous PEDF enhanced keratinocyte adhesion, therefore impairing migration, while having no effect on cell proliferation. The results suggest that modulation of PEDF levels may play a pivotal role in skin homoeostasis and the response of keratinocytes to injury or inflammatory insults.


Assuntos
Proteínas do Olho/metabolismo , Homeostase/fisiologia , Queratinócitos/metabolismo , Fatores de Crescimento Neural/metabolismo , Serpinas/metabolismo , Pele/metabolismo , Cicatrização/fisiologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Humanos , Técnicas In Vitro , Interleucina-1beta/farmacologia , Interleucina-6/farmacologia , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Pele/citologia , Pele/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
16.
PLoS One ; 9(3): e91574, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24618995

RESUMO

Prior studies suggest that the impaired healing seen in diabetic wounds derives from a state of persistent hyper-inflammation characterized by harmful increases in inflammatory leukocytes including macrophages. However, such studies have focused on wounds at later time points (day 10 or older), and very little attention has been given to the dynamics of macrophage responses in diabetic wounds early after injury. Given the importance of macrophages for the process of healing, we studied the dynamics of macrophage response during early and late phases of healing in diabetic wounds. Here, we report that early after injury, the diabetic wound exhibits a significant delay in macrophage infiltration. The delay in the macrophage response in diabetic wounds results from reduced Chemokine (C-C motif) ligand 2 (CCL2) expression. Importantly, one-time treatment with chemoattractant CCL2 significantly stimulated healing in diabetic wounds by restoring the macrophage response. Our data demonstrate that, rather than a hyper-inflammatory state; the early diabetic wound exhibits a paradoxical and damaging decrease in essential macrophage response. Our studies suggest that the restoration of the proper kinetics of macrophage response may be able to jumpstart subsequent healing stages. CCL2 chemokine-based therapy may be an attractive strategy to promote healing in diabetic wounds.


Assuntos
Quimiocina CCL2/metabolismo , Complicações do Diabetes/metabolismo , Macrófagos/metabolismo , Cicatrização , Animais , Quimiocina CCL2/farmacologia , Complicações do Diabetes/imunologia , Complicações do Diabetes/patologia , Diabetes Mellitus Tipo 2 , Modelos Animais de Doenças , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Pele/imunologia , Pele/metabolismo , Pele/patologia , Cicatrização/efeitos dos fármacos , Cicatrização/imunologia
17.
Exp Dermatol ; 23(3): 189-94, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24521099

RESUMO

The involvement of lymphocytes in skin wound healing has not been studied extensively. This study shows that CD4 and CD8 cells are present in significant numbers in skin wounds with peak levels at days 5-10 and 7-10, respectively. Both subsets expressed inflammatory and/or regulatory cytokines. To examine the function of CD4 and CD8 lymphocytes in tissue repair, wound healing was examined in mice deficient for either CD4 or CD8 cells. Wounds in CD4 deficient mice exhibited an initial delayed infiltration of CD8 cells followed by a relative increase in CD8 cells at day 10 and thereafter. Wounds in CD4 deficient mice also displayed up-regulated expression of IL1ß, IL-6, IL-17, IFN-γ, CXCL-1 and down-regulated expression of IL-4 as compared to wild-type mice. In contrast, wounds in CD8 deficient mice showed significantly decreased infiltration of CD4+ cells, neutrophils, and macrophages along with down-regulated expression of IL1ß, IL-6, TNF-α, CXCL-1, CCL-2 and up-regulated expression of IL-4 as compared to wild-type mice. Despite these significant changes in cytokine expression and inflammatory cell infiltrate, the rate of wound closure, wound breaking strength, collagen content and angiogenesis in either CD4 or CD8 deficiency showed no significant difference from that of wild-type mice. The results suggest that, despite being present and involved in wound inflammation, neither CD4+ nor CD8+ cells play critical roles in the healing process of skin wounds. Further studies are needed to investigate whether these cells might play critical roles in wounds that experience stress such as ischemia or infection.


Assuntos
Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD8-Positivos/fisiologia , Citocinas/genética , Pele/citologia , Pele/metabolismo , Cicatrização/fisiologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Movimento Celular , Quimiocina CCL2/genética , Quimiocina CXCL1/genética , Colágeno/metabolismo , Feminino , Interferon gama/genética , Interleucina-17/genética , Interleucina-1beta/genética , Interleucina-4/genética , Interleucina-6/genética , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/fisiologia , RNA Mensageiro/metabolismo , Transcriptoma , Fator de Necrose Tumoral alfa/genética
18.
Front Immunol ; 4: 188, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23847625

RESUMO

Vascularized composite tissue allotransplantation is a rapidly evolving area that has brought technological advances to the forefront of plastic surgery, hand surgery, and transplant biology. Composite tissue allografts (CTAs) may have profound functional, esthetic, and psychological benefits, but carry with them the risks of life-long immunosuppression and the inadequate abilities to monitor and prevent rejection. Allografts may suffer from additional insults further weakening their overall benefits. Changes in local blood flow, lack of fully restored neurologic function, infection, inflammation with subsequent dysregulated regenerative activity, and paucity of appropriate growth factors may all be involved in reducing the potential of CTAs and therefore serve as new therapeutic targets to improve outcomes. Strategies involving minimized immunosuppression and pro-regenerative therapy may provide a greater path to optimizing long-term CTA function. One such strategy may include mesenchymal stem cells (MSCs), which can provide unique anti-inflammatory and pro-regenerative effects. Insights gained from new studies with MSCs on composite allografts, advances in tissue regeneration reported in other MSC-based clinical studies, as well as consideration of newly described capacities of MSCs, may provide new regenerative based strategies for the care of CTAs.

19.
J Invest Dermatol ; 133(1): 258-67, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22951730

RESUMO

Toll-like receptor 4 (TLR4) has a key role in the initiation of innate immunity and in the regulation of adaptive immune responses. Using microarray analysis and PCR, TLR4 expression was observed to increase in murine skin wounds at the early stages. The cellular location of TLR4 was primarily in keratinocytes at the wound edges. The closure of excisional wounds was significantly delayed in TLR4-deficient (C3H/HeJ) as compared with wild-type mice, and both IL-1ß and IL-6 production were significantly lower in the wounds of TLR4-deficient mice. EGF also markedly decreased in the wound edge of epidermis in TLR4-deficient mice. In vitro studies confirmed that a wound stimulus induces TLR4 mRNA expression in primary normal human epidermal keratinocytes (NHEK). In vitro injury also induced the phosphorylation of p38 and JNK MAPK (Jun N-terminal kinase mitogen-activated protein kinase) and the expression of IL-1ß and tumor necrosis factor-α by NHEK. Blockade of TLR4 delayed NHEK migration and abolished the phosphorylation of p38 and JNK MAPK, and blockade of TLR4 and/or p38/JNK abolished IL-1ß production. The results suggest that inflammatory cytokine production by injured NHEK is stimulated via the TLR4-p38 and JNK MAPK signaling pathway. Together, the results provide evidence for a role of TLR4 at sites of injury, and suggest that TLR4 is an important regulator of wound inflammation.


Assuntos
Queratinócitos/metabolismo , Pele/metabolismo , Receptor 4 Toll-Like/biossíntese , Cicatrização/fisiologia , Animais , Anticorpos Bloqueadores/imunologia , Linhagem Celular , Movimento Celular/fisiologia , Fator de Crescimento Epidérmico/biossíntese , Humanos , Interleucina-1beta/biossíntese , Interleucina-6/biossíntese , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C3H , Fosforilação , Pele/efeitos dos fármacos , Pele/lesões , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
J Surg Res ; 181(1): 20-4, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22683075

RESUMO

BACKGROUND: Wound healing is impaired in the aged. Mesenchymal stem cells (MSCs) can exert beneficial effects in wounds; however, promoting healing in the challenging setting of aged skin may require additional potency. MSCs can enhance the production of pro-regenerative cytokines and growth factors when activated with interferon gamma. We hypothesized that the increased potency of activated MSC could be used to facilitate wound healing in the aged mice. METHODS: Young and old C57BL6 mice underwent incisional wounds and were treated with naive MSCs, activated MSCs, or vehicle to examine MSC effects on tensile strength in the aged skin. To test whether the benefits of MSC treatment could be attributed to the participation of host macrophages, liposomal clodronate was used to deplete host macrophages. RESULTS: In older mice, tensile strength of healing wounds was significantly lower than that in younger mice. Older mice treated with activated MSCs showed significant increases in tensile strength restoring the strength to that observed in younger mice. Macrophage depletion abrogated the beneficial effect of MSC. CONCLUSIONS: Activated MSCs restored wound tensile strength in the aged mice, and this effect was dependent on host macrophage activity. These data provide encouraging support for the development of activated MSC therapies for enhanced tissue regeneration, especially for older population groups.


Assuntos
Macrófagos/fisiologia , Células-Tronco Mesenquimais/fisiologia , Resistência à Tração , Cicatrização , Envelhecimento , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA