Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Front Immunol ; 15: 1384354, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39072314

RESUMO

Introduction: Ductal carcinoma in situ (DCIS), characterized by a proliferation of neoplastic cells confined within the mammary ducts, is distinctly isolated from the surrounding stroma by an almost uninterrupted layer of myoepithelial cells (MECs) and by the basement membrane. Heightened interactions within the adipose microenvironment, particularly in obese patients, may play a key role in the transition from DCIS to invasive ductal carcinoma (IDC), which is attracting growing interest in scientific research. Adipose tissue undergoes metabolic changes in obesity, impacting adipokine secretion and promoting chronic inflammation. This study aimed to assess the interactions between DCIS, including in situ cancer cells and MECs, and the various components of its inflammatory adipose microenvironment (adipocytes and macrophages). Methods: To this end, a 3D co-culture model was developed using bicellular bi-fluorescent DCIS-like tumoroids, adipose cells, and macrophages to investigate the influence of the inflammatory adipose microenvironment on DCIS progression. Results: The 3D co-culture model demonstrated an inhibition of the expression of genes involved in apoptosis (BAX, BAG1, BCL2, CASP3, CASP8, and CASP9), and an increase in genes related to cell survival (TP53, JUN, and TGFB1), inflammation (TNF-α, PTGS2, IL-6R), invasion and metastasis (TIMP1 and MMP-9) in cancer cells of the tumoroids under inflammatory conditions versus a non-inflammatory microenvironment. On the contrary, it confirmed the compromised functionality of MECs, resulting in the loss of their protective effects against cancer cells. Adipocytes from obese women showed a significant increase in the expression of all studied myofibroblast-associated genes (myoCAFs), such as FAP and α-SMA. In contrast, adipocytes from normal-weight women expressed markers of inflammatory fibroblast phenotypes (iCAF) characterized by a significant increase in the expression of LIF and inflammatory cytokines such as TNF-α, IL-1ß, IL-8, and CXCL-10. These changes also influenced macrophage polarization, leading to a pro-inflammatory M1 phenotype. In contrast, myoCAF-associated adipocytes, and the cancer-promoting microenvironment polarized macrophages towards an M2 phenotype, characterized by high CD163 receptor expression and IL-10 and TGF-ß secretion. Discussion: Reciprocal interactions between the tumoroid and its microenvironment, particularly in obesity, led to transcriptomic changes in adipocytes and macrophages, may participate in breast cancer progression while disrupting the integrity of the MEC layer. These results underlined the importance of adipose tissue in cancer progression.


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , Técnicas de Cocultura , Progressão da Doença , Macrófagos , Obesidade , Microambiente Tumoral , Humanos , Feminino , Obesidade/metabolismo , Obesidade/patologia , Neoplasias da Mama/patologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Microambiente Tumoral/imunologia , Carcinoma Intraductal não Infiltrante/patologia , Carcinoma Intraductal não Infiltrante/metabolismo , Carcinoma Intraductal não Infiltrante/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Adipócitos/metabolismo , Adipócitos/patologia , Tecido Adiposo/patologia , Tecido Adiposo/metabolismo , Linhagem Celular Tumoral
3.
Nutrients ; 15(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37049592

RESUMO

Excess weight and obesity are the fifth leading cause of death globally, and sustained efforts from health professionals and researchers are required to mitigate this pandemic-scale problem. Polyphenols and flavonoids found in Aspalathus linearis-a plant widely consumed as Rooibos tea-are increasingly being investigated for their positive effects on various health issues including inflammation. The aim of our study was to examine the effect of Rooibos extract on obesity and the associated low-grade chronic inflammatory state by testing antioxidant activity, cytokine secretions, macrophage polarization and the differentiation of human adipocytes through the development of adipospheroids. Rooibos extract significantly decreased ROS production and the secretion of pro-inflammatory cytokines (IFN-γ, IL-12, IL-2 and IL-17a) in human leukocytes. Additionally, Rooibos extract down-regulated LPS-induced macrophage M1 polarization, shown by a significant decrease in the expression of pro-inflammatory cytokines: TNFα, IL-8, IL-6, IL-1ß and CXCL10. In addition, Rooibos inhibited intracellular lipid accumulation and reduced adipogenesis by decreasing the expression of PPARγ, Ap2 and HSL in adipospheroids. A significant decrease in leptin expression was noted and this, more interestingly, was accompanied by a significant increase in adiponectin expression. Using a co-culture system between macrophages and adipocytes, Rooibos extract significantly decreased the expression of all studied pro-inflammatory cytokines and particularly leptin, and increased adiponectin expression. Thus, adding Rooibos tea to the daily diet is likely to prevent the development of obesity associated with chronic low-level inflammation.


Assuntos
Aspalathus , Humanos , Leptina , Extratos Vegetais/farmacologia , Adiponectina , Obesidade/complicações , Inflamação , Adipócitos , Citocinas , Chá
4.
Biomater Sci ; 11(9): 3308-3320, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36946175

RESUMO

Recently, many types of 3D culture systems have been developed to preserve the physicochemical environment and biological characteristics of the original tumors better than the conventional 2D monolayer culture system. There are various types of models belonging to this culture, such as the culture based on non-adherent and/or scaffold-free matrices to form the tumors. Agarose mold has been widely used to facilitate tissue spheroid assembly, as it is essentially non-biodegradable, bio-inert, biocompatible, low-cost, and low-attachment material that can promote cell spheroidization. As no studies have been carried out on the development of a fluorescent bicellular tumoroid mimicking ductal carcinoma in situ (DCIS) using human cell lines, our objective was to detail the practical approaches developed to generate this model, consisting of a continuous layer of myoepithelial cells (MECs) around a previously formed in situ breast tumor. The practical approaches developed to generate a bi-cellular tumoroid mimicking ductal carcinoma in situ (DCIS), consisting of a continuous layer of myoepithelial cells (MECs) around a previously formed in situ breast tumoroid. Firstly, the optimal steps and conditions of spheroids generation using a non-adherent agarose gel were described, in particular, the appropriate medium, seeding density of each cell type and incubation period. Next, a lentiviral transduction approach to achieve stable fluorescent protein expression (integrative system) was used to characterize the different cell lines and to track tumoroid generation through immunofluorescence, the organization of the two cell types was validated, specific merits and drawbacks were compared to lentiviral transduction. Two lentiviral vectors expressing either EGFP (Enhanced Green Fluorescent Protein) or m-Cherry (Red Fluorescent Protein) were used. Various rates of a multiplicity of infection (MOI) and multiple types of antibodies (anti-p63, anti-CK8, anti-Maspin, anti-Calponin) for immunofluorescence analysis were tested to determine the optimal conditions for each cell line. At MOI 40 (GFP) and MOI 5 (m-Cherry), the signals were almost homogeneously distributed in the cells which could then be used to generate the DCIS-like tumoroids. Images of the tumoroids in agarose molds were captured with a confocal microscope Micro Zeiss Cell Observer Spinning Disk or with IncuCyte® to follow the progress of the generation. Measurement of protumoral cytokines such as IL-6, IL8 and leptin confirmed their secretion in the supernatants, indicating that the properties of our cells were not altered. Finally the advantages and disadvantages of each fluorescent approach were discussed. This model could also be used for other solid malignancies to study the complex relationship between different cells such as tumor and myoepithelial cells in various microenvironments (inflammatory, adipose and tumor, obesity, etc.). Although, this new model is well established to monitor drug screening applications and perform pharmacokinetic and pharmacodynamic analyses.


Assuntos
Neoplasias da Mama , Carcinoma Ductal de Mama , Carcinoma Intraductal não Infiltrante , Humanos , Feminino , Carcinoma Intraductal não Infiltrante/química , Carcinoma Intraductal não Infiltrante/metabolismo , Carcinoma Intraductal não Infiltrante/patologia , Carcinoma Ductal de Mama/química , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , Sefarose , Biomarcadores Tumorais , Microambiente Tumoral
5.
Cells ; 12(6)2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36980256

RESUMO

Life expectancy has drastically increased over the last few decades worldwide, with important social and medical burdens and costs. To stay healthy longer and to avoid chronic disease have become essential issues. Organismal aging is a complex process that involves progressive destruction of tissue functionality and loss of regenerative capacity. One of the most important aging hallmarks is cellular senescence, which is a stable state of cell cycle arrest that occurs in response to cumulated cell stresses and damages. Cellular senescence is a physiological mechanism that has both beneficial and detrimental consequences. Senescence limits tumorigenesis, lifelong tissue damage, and is involved in different biological processes, such as morphogenesis, regeneration, and wound healing. However, in the elderly, senescent cells increasingly accumulate in several organs and secrete a combination of senescence associated factors, contributing to the development of various age-related diseases, including cancer. Several studies have revealed major molecular pathways controlling the senescent phenotype, as well as the ones regulating its interactions with the immune system. Attenuating the senescence-associated secretory phenotype (SASP) or eliminating senescent cells have emerged as attractive strategies aiming to reverse or delay the onset of aging diseases. Here, we review current senotherapies designed to suppress the deleterious effect of SASP by senomorphics or to selectively kill senescent cells by "senolytics" or by immune system-based approaches. These recent investigations are promising as radical new controls of aging pathologies and associated multimorbidities.


Assuntos
Envelhecimento , Senescência Celular , Doença Crônica , Senescência Celular/efeitos dos fármacos , Humanos , Animais , Envelhecimento/patologia , Apoptose , Senoterapia/farmacologia , Citotoxicidade Celular Dependente de Anticorpos , Doença Crônica/terapia
6.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835413

RESUMO

Several immune and immunocompetent cells, including dendritic cells, macrophages, adipocytes, natural killer cells, T cells, and B cells, are significantly correlated with the complex discipline of oncology. Cytotoxic innate and adaptive immune cells can block tumor proliferation, and others can prevent the immune system from rejecting malignant cells and provide a favorable environment for tumor progression. These cells communicate with the microenvironment through cytokines, a chemical messenger, in an endocrine, paracrine, or autocrine manner. These cytokines play an important role in health and disease, particularly in host immune responses to infection and inflammation. They include chemokines, interleukins (ILs), adipokines, interferons, colony-stimulating factors (CSFs), and tumor necrosis factor (TNF), which are produced by a wide range of cells, including immune cells, such as macrophages, B-cells, T-cells, and mast cells, as well as endothelial cells, fibroblasts, a variety of stromal cells, and some cancer cells. Cytokines play a crucial role in cancer and cancer-related inflammation, with direct and indirect effects on tumor antagonistic or tumor promoting functions. They have been extensively researched as immunostimulatory mediators to promote the generation, migration and recruitment of immune cells that contribute to an effective antitumor immune response or pro-tumor microenvironment. Thus, in many cancers such as breast cancer, cytokines including leptin, IL-1B, IL-6, IL-8, IL-23, IL-17, and IL-10 stimulate while others including IL-2, IL-12, and IFN-γ, inhibit cancer proliferation and/or invasion and enhance the body's anti-tumor defense. Indeed, the multifactorial functions of cytokines in tumorigenesis will advance our understanding of cytokine crosstalk pathways in the tumor microenvironment, such as JAK/STAT, PI3K, AKT, Rac, MAPK, NF-κB, JunB, cFos, and mTOR, which are involved in angiogenesis, cancer proliferation and metastasis. Accordingly, targeting and blocking tumor-promoting cytokines or activating and amplifying tumor-inhibiting cytokines are considered cancer-directed therapies. Here, we focus on the role of the inflammatory cytokine system in pro- and anti-tumor immune responses, discuss cytokine pathways involved in immune responses to cancer and some anti-cancer therapeutic applications.


Assuntos
Neoplasias da Mama , Citocinas , Microambiente Tumoral , Feminino , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Citocinas/metabolismo , Células Endoteliais/metabolismo , Inflamação/metabolismo
7.
Int J Oncol ; 62(1)2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36367176

RESUMO

Subsequently to the publication of the above article, a concerned reader drew to the attention of the Editorial Office and the authors that certain pairings of the GAPDH western blotting control bands in Fig. 4 appeared to be strikingly similar to adjacent pairings of bands within the same gel slices; moreover, data bands featured in the HuT­2, C91­PL and Jurkat zymography blots in Fig. 5 also appeared to be remarkably similar, both comparing the bands within a given gel slice (as in the case of the Jurkat cell experiment in Fig. 5) or comparing between gel slices (as in the case of the Hut­2 cells compared with the C910PL cells in Fig. 5). The Editorial Office independently investigated these concerns, and reached the conclusion that the bands did appear strikingly similar; too similar for the appearance of the bands within these figures to have arisen by chance. Moreover, the application of a software analysis program revealed that certain of the data in Fig. 6 had also appeared in another paper published by several of the same authors in another journal at around the same time. As a result of this investigation, the Editor of International Journal of Oncology has decided that this paper should be retracted from the journal on account of a lack of confidence in the authenticity of the presented data. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a satisfactory reply. The Editor apologizes to the readership for any inconvenience caused. [International Journal of Oncology 45: 2159­2166, 2014; DOI: 10.3892/ijo.2014.2638].

8.
Biomedicines ; 10(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36428526

RESUMO

Obesity and breast cancer are two major health issues that could be categorized as sincere threats to human health. In the last few decades, the relationship between obesity and cancer has been well established and extensively investigated. There is strong evidence that overweight and obesity increase the risk of postmenopausal breast cancer, and adipokines are the central players in this relationship. Produced and secreted predominantly by white adipose tissue, adiponectin is a bioactive molecule that exhibits numerous protective effects and is considered the guardian angel of adipokine. In the obesity-cancer relationship, more and more evidence shows that adiponectin may prevent and protect individuals from developing breast cancer. Recently, several updates have been published on the implication of adiponectin in regulating tumor development, progression, and metastases. In this review, we provide an updated overview of the metabolic signaling linking adiponectin and breast cancer in all its stages. On the other hand, we critically summarize all the available promising candidates that may reactivate these pathways mainly by targeting adiponectin receptors. These molecules could be synthetic small molecules or plant-based proteins. Interestingly, the advances in genomics have made it possible to create peptide sequences that could specifically replace human adiponectin, activate its receptor, and mimic its function. Thus, the obvious anti-cancer activity of adiponectin on breast cancer should be better exploited, and adiponectin must be regarded as a serious biomarker that should be targeted in order to confront this threatening disease.

9.
Cancers (Basel) ; 14(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077806

RESUMO

BACKGROUND: Human cytomegalovirus (HCMV) oncomodulation, molecular mechanisms, and ability to support polyploid giant cancer cells (PGCCs) generation might underscore its contribution to oncogenesis, especially breast cancers. The heterogeneity of strains can be linked to distinct properties influencing the virus-transforming potential, cancer types induced, and patient's clinical outcomes. METHODS: We evaluated the transforming potential in vitro and assessed the acquired cellular phenotype, genetic and molecular features, and stimulation of stemness of HCMV strains, B544 and B693, isolated from EZH2HighMycHigh triple-negative breast cancer (TNBC) biopsies. Therapeutic response assessment after paclitaxel (PTX) and ganciclovir (GCV) treatment was conducted in addition to the molecular characterization of the tumor microenvironment (TME). FINDINGS: HCMV-B544 and B693 transformed human mammary epithelial cells (HMECs). We detected multinucleated and lipid droplet-filled PGCCs harboring HCMV. Colony formation was detected and Myc was overexpressed in CMV-Transformed-HMECs (CTH cells). CTH-B544 and B693 stimulated stemness and established an epithelial/mesenchymal hybrid state. HCMV-IE1 was detected in CTH long-term cultures indicating a sustained viral replication. Biopsy B693 unveiled a tumor signature predicting a poor prognosis. CTH-B544 cells were shown to be more sensitive to PTX/GCV therapy. CONCLUSION: The oncogenic and stemness signatures of HCMV strains accentuate the oncogenic potential of HCMV in breast cancer progression thereby leading the way for targeted therapies and innovative clinical interventions that will improve the overall survival of breast cancer patients.

10.
Biomolecules ; 12(6)2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35740961

RESUMO

While studying c-Myc protein expression in several Burkitt lymphoma cell lines and in lymph nodes from a mouse model bearing a translocated c-MYC gene from the human BL line IARC-BL60, we surprisingly discovered a complex electrophoretic profile. Indeed, the BL60 cell line carrying the t(8;22) c-MYC translocation exhibits a simple pattern, with a single c-Myc2 isoform. Analysis of the c-MYC transcripts expressed by tumor lymph nodes in the mouse λc-MYC (Avy/a) showed for the first time five transcripts that are associated with t(8;22) c-MYC translocation. The five transcripts were correlated with the production of c-Myc2 and c-MycS, and loss of c-Myc1. The contribution of these transcripts to the oncogenic activation of the t(8;22) c-MYC is discussed.


Assuntos
Linfoma de Burkitt , Genes myc , Animais , Linfoma de Burkitt/genética , Camundongos , RNA Mensageiro/genética , Transcrição Gênica , Translocação Genética
11.
Endocr Relat Cancer ; 29(8): 451-465, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35583188

RESUMO

Menin, encoded by the MEN1 gene, has been identified as a critical factor regulating ESR1 transcription, playing an oncogenic role in ER+ breast cancer (BC) cells. Here, we further dissected the consequences of menin inactivation in ER+ BC cells by focusing on factors within two major pathways involved in BC, mTOR and MYC. MEN1 silencing in MCF7 and T-47D resulted in an increase in phosphor-p70S6K1, phosphor-p85S6K1 and phosphor-4EBP1 expression. The use of an AKT inhibitor inhibited the activation of S6K1 and S6RP triggered by MEN1 knockdown (KD). Moreover, MEN1 silencing in ER+ BC cells led to increased formation of the eIF4E and 4G complex. Clinical studies showed that patients with menin-low breast cancer receiving tamoxifen plus everolimus displayed a trend toward better overall survival. Importantly, MEN1 KD in MCF7 and T-47D cells led to reduced MYC expression. ChIP analysis demonstrated that menin bound not only to the MYC promoter but also to its 5' enhancer. Furthermore, E2-treated MEN1 KD MCF7 cells displayed a decrease in MYC activation, suggesting its role in estrogen-mediated MYC transcription. Finally, expression data mining in tumors revealed a correlation between the expression of MEN1 mRNA and that of several mTORC1 components and targets and a significant inverse correlation between MEN1 and two MYC inhibitory factors, MYCBP2 and MYCT1, in ER+ BC. The current work thus highlights altered mTORC1 and MYC pathways after menin inactivation in ER+ BC cells, providing insight into the crosstalk between menin, mTORC1 and MYC in ER+ BC.


Assuntos
Neoplasias da Mama , Proteínas Proto-Oncogênicas , Neoplasias da Mama/patologia , Estrogênios/uso terapêutico , Feminino , Inativação Gênica , Humanos , Células MCF-7 , Alvo Mecanístico do Complexo 1 de Rapamicina , Oncogenes , Proteínas Proto-Oncogênicas/genética
12.
Biology (Basel) ; 11(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35205204

RESUMO

Tumor metastasis is a major cause of death in cancer patients. It involves not only the intrinsic alterations within tumor cells, but also crosstalk between these cells and components of the tumor microenvironment (TME). Tumorigenesis is a complex and dynamic process, involving the following three main stages: initiation, progression, and metastasis. The transition between these stages depends on the changes within the extracellular matrix (ECM), in which tumor and stromal cells reside. This matrix, under the effect of growth factors, cytokines, and adipokines, can be morphologically altered, degraded, or reorganized. Many cancers evolve to form an immunosuppressive TME locally and create a pre-metastatic niche in other tissue sites. TME and pre-metastatic niches include myofibroblasts, immuno-inflammatory cells (macrophages), adipocytes, blood, and lymphatic vascular networks. Several studies have highlighted the adipocyte-macrophage interaction as a key driver of cancer progression and dissemination. The following two main classes of macrophages are distinguished: M1 (pro-inflammatory/anti-tumor) and M2 (anti-inflammatory/pro-tumor). These cells exhibit distinct microenvironment-dependent phenotypes that can promote or inhibit metastasis. On the other hand, obesity in cancer patients has been linked to a poor prognosis. In this regard, tumor-associated adipocytes modulate TME through the secretion of inflammatory mediators, which modulate and recruit tumor-associated macrophages (TAM). Hereby, this review describes the cellular and molecular mechanisms that link inflammation, obesity, and cancer. It provides a comprehensive overview of adipocytes and macrophages in the ECM as they control cancer initiation, progression, and invasion. In addition, it addresses the mechanisms of tumor anchoring and recruitment for M1, M2, and TAM macrophages, specifically highlighting their origin, classification, polarization, and regulatory networks, as well as their roles in the regulation of angiogenesis, invasion, metastasis, and immunosuppression, specifically highlighting the role of adipocytes in this process.

13.
Molecules ; 26(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34885849

RESUMO

Colorectal cancer (CRC) is a leading cause of cancer-related death. The demand for new therapeutic approaches has increased attention paid toward therapies with high targeting efficiency, improved selectivity and few side effects. Porphyrins are powerful molecules with exceptional properties and multifunctional uses, and their special affinity to cancer cells makes them the ligands par excellence for anticancer drugs. Porphyrin derivatives are used as the most important photosensitizers (PSs) for photodynamic therapy (PDT), which is a promising approach for anticancer treatment. Nevertheless, the lack of solubility and selectivity of the large majority of these macrocycles led to the development of different photosensitizer complexes. In addition, targeting agents or nanoparticles were used to increase the efficiency of these macrocycles for PDT applications. On the other hand, gold tetrapyrrolic macrocycles alone showed very interesting chemotherapeutic activity without PDT. In this review, we discuss the most important porphyrin derivatives, alone or associated with other drugs, which have been found effective against CRC, as we describe their modifications and developments through substitutions and delivery systems.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Porfirinas/uso terapêutico , Humanos , Nanopartículas/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/química
14.
Int J Mol Sci ; 22(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34830082

RESUMO

The traditional two-dimensional (2D) in vitro cell culture system (on a flat support) has long been used in cancer research. However, this system cannot be fully translated into clinical trials to ideally represent physiological conditions. This culture cannot mimic the natural tumor microenvironment due to the lack of cellular communication (cell-cell) and interaction (cell-cell and cell-matrix). To overcome these limitations, three-dimensional (3D) culture systems are increasingly developed in research and have become essential for tumor research, tissue engineering, and basic biology research. 3D culture has received much attention in the field of biomedicine due to its ability to mimic tissue structure and function. The 3D matrix presents a highly dynamic framework where its components are deposited, degraded, or modified to delineate functions and provide a platform where cells attach to perform their specific functions, including adhesion, proliferation, communication, and apoptosis. So far, various types of models belong to this culture: either the culture based on natural or synthetic adherent matrices used to design 3D scaffolds as biomaterials to form a 3D matrix or based on non-adherent and/or matrix-free matrices to form the spheroids. In this review, we first summarize a comparison between 2D and 3D cultures. Then, we focus on the different components of the natural extracellular matrix that can be used as supports in 3D culture. Then we detail different types of natural supports such as matrigel, hydrogels, hard supports, and different synthetic strategies of 3D matrices such as lyophilization, electrospiding, stereolithography, microfluid by citing the advantages and disadvantages of each of them. Finally, we summarize the different methods of generating normal and tumor spheroids, citing their respective advantages and disadvantages in order to obtain an ideal 3D model (matrix) that retains the following characteristics: better biocompatibility, good mechanical properties corresponding to the tumor tissue, degradability, controllable microstructure and chemical components like the tumor tissue, favorable nutrient exchange and easy separation of the cells from the matrix.


Assuntos
Técnicas de Cultura de Células em Três Dimensões , Neoplasias/metabolismo , Esferoides Celulares/metabolismo , Engenharia Tecidual , Microambiente Tumoral , Animais , Humanos
15.
Mol Med Rep ; 24(5)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34458927

RESUMO

Natural agents have been used to restart the process of differentiation that is inhibited during leukemic transformation of hematopoietic stem or progenitor cells. Autophagy is a housekeeping pathway that maintains cell homeostasis against stress by recycling macromolecules and organelles and plays an important role in cell differentiation. In the present study, an experimental model was established to investigate the involvement of autophagy in the megakaryocyte differentiation of human erythroleukemia (HEL) cells induced by diosgenin [also known as (25R)­Spirosten­5­en­3b­ol]. It was demonstrated that Atg7 expression was upregulated from day 1 of diosgenin­induced differentiation and was accompanied by a significant elevation in the conversion of light chain 3 A/B (LC3­A/B)­I to LC3­A/B­II. Autophagy was modulated before or after the induction of megakaryocyte differentiation using 3­methyladenine (3­MA, autophagy inhibitor) and metformin (Met, autophagy initiation activator). 3­MA induced a significant accumulation of the LC3 A/B­II form at day 8 of differentiation. It was revealed that 3­MA had a significant repressive effect on the nuclear (polyploidization) and membrane glycoprotein V [(GpV) expression] maturation. On the other hand, autophagy activation increased GpV genomic expression, but did not change the nuclear maturation profile after HEL cells treatment with Met. It was concluded that autophagy inhibition had a more prominent effect on the diosgenin­differentiated cells than autophagy activation.


Assuntos
Autofagia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diosgenina/farmacologia , Leucemia Eritroblástica Aguda/metabolismo , Megacariócitos/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/genética , Linhagem Celular , Humanos , RNA Mensageiro/metabolismo
16.
Front Oncol ; 11: 627866, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937031

RESUMO

A growing body of evidence addressing the involvement of human cytomegalovirus (HCMV) in malignancies had directed attention to the oncomodulation paradigm. HCMV-DB infected human mammary epithelial cells (HMECs) in culture showed the emergence of clusters of rapidly proliferating, spheroid-shaped transformed cells named CTH (CMV-Transformed HMECs) cells. CTH cells assessment suggests a direct contribution of HCMV to oncogenesis, from key latent and lytic genes activating oncogenic pathways to fueling tumor evolution. We hypothesized that the presence of HCMV genome in CTH cells is of pivotal importance for determining its oncogenic potential. We previously reported the detection of a long non-coding (lnc) RNA4.9 gene in CTH cells. Therefore, we assessed here the presence of UL69 gene, located nearby and downstream of the lncRNA4.9 gene, in CTH cells. The HCMV UL69 gene in CTH cells was detected using polymerase chain reaction (PCR) and sequencing of UL69 gene was performed using Sanger method. The corresponding amino acid sequence was then blasted against the UL69 sequence derived from HCMV-DB genome using NCBI Protein BLAST tool. A 99% identity was present between the nucleotide sequence present in CTH cells and HCMV-DB genome. UL69 transcript was detected in RNA extracts of CTH cells, using a reverse transcription polymerase chain reaction (RT-PCR) assay, and pUL69 protein was identified in CTH lysates using western blotting. Ganciclovir-treated CTH cells showed a decrease in UL69 gene detection and cellular proliferation. In CTH cells, the knockdown of UL69 with siRNA was assessed by RT-qPCR and western blot to reveal the impact of pUL69 on HCMV replication and CTH cell proliferation. Finally, UL69 gene was detected in breast cancer biopsies. Our results indicate a close link between the UL69 gene detected in the HCMV-DB isolate used to infect HMECs, and the UL69 gene present in transformed CTH cells and tumor biopsies, further highlighting a direct role for HCMV in breast tumor development.

17.
Cancers (Basel) ; 13(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805340

RESUMO

The tumor microenvironment plays a major role in tumor growth, invasion and resistance to chemotherapy, however understanding how all actors from microenvironment interact together remains a complex issue. The tumor microenvironment is classically represented as three closely connected components including the stromal cells such as immune cells, fibroblasts, adipocytes and endothelial cells, the extracellular matrix (ECM) and the cytokine/growth factors. Within this space, proteins of the adamalysin family (ADAM for a disintegrin and metalloproteinase; ADAMTS for ADAM with thrombospondin motifs; ADAMTSL for ADAMTS-like) play critical roles by modulating cell-cell and cell-ECM communication. During last decade, the implication of adamalysins in the development of hepatocellular carcinoma (HCC) has been supported by numerous studies however the functional characterization of most of them remain unsettled. In the present review we propose both an overview of the literature and a meta-analysis of adamalysins expression in HCC using data generated by The Cancer Genome Atlas (TCGA) Research Network.

18.
Oncogene ; 40(17): 3030-3046, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33767437

RESUMO

A growing body of evidence is recognizing human cytomegalovirus (HCMV) as a potential oncogenic virus. We hereby provide the first experimental in vitro evidence for HCMV as a reprogramming vector, through the induction of dedifferentiation of mature human mammary epithelial cells (HMECs), generation of a polyploid giant cancer cell (PGCC) phenotype characterized by sustained growth of blastomere-like cells, in concordance with the acquisition of embryonic stem cells characteristics and epithelial-mesenchymal plasticity. HCMV presence parallels the succession of the observed cellular and molecular events potentially ensuing the transformation process. Correlation between PGCCs detection and HCMV presence in breast cancer tissue further validates our hypothesis in vivo. Our study indicates that some clinical HCMV strains conserve the potential to transform HMECs and fit with a "blastomere-like" model of oncogenesis, which may be relevant in the pathophysiology of breast cancer and other adenocarcinoma, especially of poor prognosis.


Assuntos
Transformação Celular Neoplásica , Citomegalovirus , Carcinogênese , Proliferação de Células , Células Epiteliais , Humanos , Poliploidia
19.
Brain Sci ; 11(3)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673559

RESUMO

Brain tumors can present with various psychiatric symptoms, with or without neurological symptoms, an aspect that complicates the clinical picture. However, no systematic description of symptoms that should prompt a neurological investigation has been provided. This review aims to summarize available case reports describing patients with brain tumors showing psychiatric symptoms before brain tumor diagnosis, in order to provide a comprehensive description of these symptoms as well as their potential relationship with delay in the diagnosis. A systematic literature review on case reports of brain tumors and psychiatric symptoms from 1970 to 2020 was conducted on PubMed, Ovid, Psych Info, and MEDLINE. Exclusion criteria comprised tumors not included in the World Health Organization (WHO) Classification 4th edition and cases in which psychiatric symptoms were absent or followed the diagnosis. A total of 165 case reports were analyzed. In a subset of patients with brain tumors, psychiatric symptoms can be the only manifestation or precede focal neurological signs by months or even years. The appearance of focal or generalized neurological symptoms after, rather than along with, psychiatric symptoms was associated with a significant delay in the diagnosis in adults. A timely assessment of psychiatric symptoms might help to improve early diagnosis of brain tumors.

20.
Eur J Nutr ; 60(5): 2521-2535, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33169226

RESUMO

PURPOSE: High plasma vitamin D (VitD) level and regular exercise (Ex) are known to have anti-cancer and immunomodulatory effects. This study aimed to evaluate the impact of VitD supplementation and imposed physical Ex on mammary tumour growth and immune response in ovariectomised mice fed high-fat (HF) diet. METHODS: Ovariectomised 33-week-old mice C57BL/6 (n = 60), housed in enriched environment (EE), were fed HF diet (450 kcal/100 g) supplemented or not with VitD (HF/HF + D: 125/1225 IU/100 g) for 12 weeks and submitted or not to Ex (HF + Ex; HF + D + Ex) on treadmill (45 min/day, 5 days/week). At w8, syngeneic tumour cells EO771 were orthotopically injected into the 4th mammary gland. Spontaneous activity (SPA), maximal speed (MS) and forelimb grip strength (GS) were measured. Tumour immune cells infiltrate was phenotyped by FACS. Data (mean ± SEM) were analysed by two-way ANOVA + Tukey post-test. RESULTS: Ex (p = 0.01) and VitD (p = 0.05) reduced body weight gain. Exercise decreased visceral fat mass [g: 1.5 ± 0.8 (HF); 1.2 ± 0.65 (HF + Ex); 0.9 ± 0.6 (HF + D + Ex); p = 0.03]. SPA (p < 0.0001) and GS (p = 0.01) were higher in HF + D + Ex mice vs others. No effect of Ex or VitD on tumour growth was detected. In tumour, VitD decreased the proportion of NK (p = 0.03), while Ex increased it (p = 0.03). The Th1/Th2 ratio is lowered by VitD (p = 0.05), while Tc/Treg ratio was not affected either by Exercise or VitD. CONCLUSION: In our experimental conditions, VitD supplementation and physical exercise have synergetic effects reducing the weight gain under HF diet and improving the physical capacities of mice. VitD coupled with exercise induces an immunosuppressive response without effect on tumour growth.


Assuntos
Neoplasias Mamárias Animais , Animais , Suplementos Nutricionais , Camundongos , Camundongos Endogâmicos C57BL , Vitamina D , Vitaminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA