Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 325(6): C1401-C1414, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37842750

RESUMO

Open heart surgery is often an unavoidable procedure for the treatment of coronary artery disease. The procedure-associated reperfusion injury affects postoperative cardiac performance and long-term outcomes. We addressed here whether cardioplegia essential for cardiopulmonary bypass surgery activates Nrf2, a transcription factor regulating the expression of antioxidant and detoxification genes. With commonly used cardioplegic solutions, high K+, low K+, Del Nido (DN), histidine-tryptophan-ketoglutarate (HTK), and Celsior (CS), we found that DN caused a significant increase of Nrf2 protein in AC16 human cardiomyocytes. Tracing the ingredients in DN led to the discovery of KCl at the concentration of 20-60 mM capable of significant Nrf2 protein induction. The antioxidant response element (ARE) luciferase reporter assays confirmed Nrf2 activation by DN or KCl. Transcriptomic profiling using RNA-seq revealed that oxidation-reduction as a main gene ontology group affected by KCl. KCl indeed elevated the expression of classical Nrf2 downstream targets, including TXNRD1, AKR1C, AKR1B1, SRXN1, and G6PD. DN or KCl-induced Nrf2 elevation is Ca2+ concentration dependent. We found that KCl decreased Nrf2 protein ubiquitination and extended the half-life of Nrf2 from 17.8 to 25.1 mins. Knocking out Keap1 blocked Nrf2 induction by K+. Nrf2 induction by DN or KCl correlates with the protection against reactive oxygen species generation or loss of viability by H2O2 treatment. Our data support that high K+ concentration in DN cardioplegic solution can induce Nrf2 protein and protect cardiomyocytes against oxidative damage.NEW & NOTEWORTHY Open heart surgery is often an unavoidable procedure for the treatment of coronary artery disease. The procedure-associated reperfusion injury affects postoperative cardiac performance and long-term outcomes. We report here that Del Nido cardioplegic solution or potassium is an effective inducer of Nrf2 transcription factor, which controls the antioxidant and detoxification response. This indicates that Del Nido solution is not only essential for open heart surgery but also exhibits cardiac protective activity.


Assuntos
Doença da Artéria Coronariana , Traumatismo por Reperfusão , Humanos , Soluções Cardioplégicas/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2/genética , Miócitos Cardíacos , Potássio , Antioxidantes/farmacologia , Peróxido de Hidrogênio/farmacologia , Parada Cardíaca Induzida/métodos , Estresse Oxidativo , Aldeído Redutase
2.
Antioxidants (Basel) ; 12(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36830011

RESUMO

Open-heart surgery is often an unavoidable option for the treatment of cardiovascular disease and prevention of cardiomyopathy. Cardiopulmonary bypass surgery requires manipulating cardiac contractile function via the perfusion of a cardioplegic solution. Procedure-associated ischemia and reperfusion (I/R) injury, a major source of oxidative stress, affects postoperative cardiac performance and long-term outcomes. Using large-scale liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics, we addressed whether cardioplegic solutions affect the baseline cellular metabolism and prevent metabolic reprogramming by oxidative stress. AC16 cardiomyocytes in culture were treated with commonly used cardioplegic solutions, High K+ (HK), Low K+ (LK), Del Nido (DN), histidine-tryptophan-ketoglutarate (HTK), or Celsior (CS). The overall metabolic profile shown by the principal component analysis (PCA) and heatmap revealed that HK or LK had a minimal impact on the baseline 78 metabolites, whereas HTK or CS significantly repressed the levels of multiple amino acids and sugars. H2O2-induced sublethal mild oxidative stress causes decreases in NAD, nicotinamide, or acetylcarnitine, but increases in glucose derivatives, including glucose 6-P, glucose 1-P, fructose, mannose, and mannose 6-P. Additional increases include metabolites of the pentose phosphate pathway, D-ribose-5-P, L-arabitol, adonitol, and xylitol. Pretreatment with HK or LK cardioplegic solution prevented most metabolic changes and increases of reactive oxygen species (ROS) elicited by H2O2. Our data indicate that HK and LK cardioplegic solutions preserve baseline metabolism and protect against metabolic reprogramming by oxidative stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA