Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Sci Nutr ; 11(11): 7130-7144, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37970394

RESUMO

Mung bean antioxidant peptides (MBAPs) were prepared from mung bean protein hydrolysate, and four peptide sequences including Ser-Asp-Arg-Thr-Gln-Ala-Pro-His (~953 Da), Ser-His-Pro-Gly-Asp-Phe-Thr-Pro-Val (~956 Da), Ser-Asp-Arg-Trp-Phe (~710 Da), and Leu-Asp-Arg-Gln-Leu (~644 Da) were identified. The effects of MBAPs on the oxidation-induced normal human liver cell line WRL-68 were analyzed to determine the mechanism protecting the oxidation-induced injury. The results showed that the cells were subjected to certain oxidative damage by H2O2 induction, as evidenced by decreased cell number and viability, overproduction of intracellular ROS, and decreased mitochondrial membrane potential. Compared with the H2O2-induced group, the MBAP-treated oxidation-induced group exhibited significantly higher cell number and viability, and the intracellular ROS was similar to that of the control group, suggesting that MBAP scavenges excessive intracellular free radicals after acting on the oxidation-induced cells. Combined with Western blotting results, it was concluded that the MBAP-treated oxidation-induced group also significantly promoted the expression of proteins related to the kelch-like ech-related protein 1 (Keap1)/ nuclear factor e2-related factor 2 (Nrf2) signaling pathway, which resulted in an approximately 2-fold increase in antioxidant enzymes, and a decrease in malondialdehyde content of approximately 55% compared to oxidatively-induced cells, leading to the recovery of both cell morphology and viability. These results suggest that MBAPs scavenge intracellular free radicals and improve oxidative stress in hepatocytes through the expression of Keap1/Nrf2 pathway-related protein, thereby reducing oxidative attack on the liver. Therefore, MBAP is applied as a nutritional ingredient in the functional food field, and this study provides a theoretical basis for the high utilization of mung bean proteins.

2.
Front Nutr ; 10: 1185047, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396130

RESUMO

Soybeans are rich in proteins and phytochemicals such as isoflavones and phenolic compounds. It is an excellent source of peptides with numerous biological functions, including anti-inflammatory, anticancer, and antidiabetic activities. Soy bioactive peptides are small building blocks of proteins that are released after fermentation or gastrointestinal digestion as well as by food processing through enzymatic hydrolysis, often in combination with novel food processing techniques (i.e., microwave, ultrasound, and high-pressure homogenization), which are associated with numerous health benefits. Various studies have reported the potential health benefits of soybean-derived functional peptides, which have made them a great substitute for many chemical-based functional elements in foods and pharmaceutical products for a healthy lifestyle. This review provides unprecedented and up-to-date insights into the role of soybean peptides in various diseases and metabolic disorders, ranging from diabetes and hypertension to neurodegenerative disorders and viral infections with mechanisms were discussed. In addition, we discuss all the known techniques, including conventional and emerging approaches, for the prediction of active soybean peptides. Finally, real-life applications of soybean peptides as functional entities in food and pharmaceutical products are discussed.

3.
Bioact Mater ; 26: 413-424, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36969106

RESUMO

Bone bionics and structural engineering have sparked a broad interest in optimizing artificial scaffolds for better bone regeneration. However, the mechanism behind scaffold pore morphology-regulated bone regeneration remains unclear, making the structure design of scaffolds for bone repair challenging. To address this issue, we have carefully assessed diverse cell behaviors of bone mesenchymal stem cells (BMSCs) on the ß-tricalcium phosphate (ß-TCP) scaffolds with three representative pore morphologies (i.e., cross column, diamond, and gyroid pore unit, respectively). Among the scaffolds, BMSCs on the ß-TCP scaffold with diamond pore unit (designated as D-scaffold) demonstrated enhanced cytoskeletal forces, elongated nucleus, faster cell mobility, and better osteogenic differentiation potential (for example, the alkaline phosphatase expression level in D-scaffold were 1.5-2 times higher than other groups). RNA-sequencing analysis and signaling pathway intervention revealed that Ras homolog gene family A (RhoA)/Rho-associated kinase-2 (ROCK2) has in-depth participated in the pore morphology-mediated BMSCs behaviors, indicating an important role of mechanical signaling transduction in scaffold-cell interactions. Finally, femoral condyle defect repair results showed that D-scaffold could effectively promote endogenous bone regeneration, of which the osteogenesis rate was 1.2-1.8 times higher than the other groups. Overall, this work provides insights into pore morphology-mediated bone regeneration mechanisms for developing novel bioadaptive scaffold designs.

4.
J Mater Chem B ; 9(16): 3573-3583, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33909742

RESUMO

The regenerative repair of large bone defects is a major problem in orthopedics and clinical medicine. The key problem is the lack of ability of existing bone graft materials to promote osteogenesis and angiogenesis. Previous studies have shown that the osteogenic or angiogenic abilities of these materials could be significantly improved by adding miRNA or small-molecule drugs to bone graft materials; however, the synergistic effect arising from this combination is not clear. Therefore, we proposed to construct a dual drug delivery system that could simultaneously achieve the co-encapsulation and co-delivery of miRNA and small-molecule drugs to explore the effect of a dual drug delivery system on bone repair. In this study, we constructed dual-sized pore structure calcium-silicon nanospheres (DPNPs) and achieved the co-encapsulation of miR-210, angiogenic gene drugs, and simvastatin (Siv), a small-molecule osteogenic drug, through metal-ion coordination and physical adsorption. In vitro and in vivo osteogenic and angiogenic experiments showed that the dual drug delivery system (Siv/DPNP/miR-210) exhibited better properties than those of the individual unloaded and single drug-loaded systems and could significantly accelerate the process of bone repair, which provides a novel strategy for the regeneration and repair of bone defects.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , MicroRNAs/metabolismo , Sinvastatina/farmacologia , Alicerces Teciduais/química , Animais , Cálcio/química , Células Cultivadas , Humanos , Camundongos , MicroRNAs/genética , Nanopartículas/química , Osteogênese/efeitos dos fármacos , Tamanho da Partícula , Porosidade , Silício/química , Sinvastatina/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA