Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 244: 114856, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36279692

RESUMO

Epidermal growth factor receptor (EGFR) is an effective drug target for the treatment of non-small cell lung cancer (NSCLC). However, a tertiary point mutation (C797S) at the ATP binding pocket of the EGFR induces resistance to the third-generation EGFR inhibitors, due to the loss of covalent interaction with Cys797. Here, we designed a series of 4-anilinoquinazoline derivatives that simultaneously occupied the ATP binding pocket and the allosteric site. The newly-synthesized compounds displayed high potency against EGFR-C797S resistance mutation. Among them, compound 14d presented high anti-proliferative effect against BaF3-EGFRL858R/T790M/C797S (IC50 = 0.75 µM) and BaF3-EGFR19del/T790M/C797S (IC50 = 0.09 µM) cells. Moreover, 14d resulted in obvious inhibition activities against EGFR and its downstream signaling pathways in a dose-dependent manner in BaF3-EGFR19del/T790M/C797S cells. Finally, 14d significantly inhibited tumor growth in BaF3-EGFR19del/T790M/C797S xenograft model (30 mg/kg, TGI = 67.95%). These results demonstrated that 14d is a novel and effective EGFR-C797S inhibitor which spanning the ATP binding pocket and the allosteric site and effective both in vitro and in vivo.


Assuntos
Compostos de Anilina , Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Neoplasias Pulmonares , Inibidores de Proteínas Quinases , Quinazolinas , Humanos , Trifosfato de Adenosina/metabolismo , Sítio Alostérico , Sítios de Ligação , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Compostos de Anilina/química , Compostos de Anilina/farmacologia , Quinazolinas/química , Quinazolinas/farmacologia , Descoberta de Drogas
2.
Biomed Pharmacother ; 156: 113884, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36306591

RESUMO

Hyperactivation of the Janus kinase 2 (JAK2) signaling pathway leads to myeloproliferative neoplasms (MPNs) and targeting JAK2 can be used as an effective strategy for the treatment of MPNs. Here, our study indicated that WWQ-131 was a highly selective JAK2 inhibitor (IC50 =2.36 nM), with 182-fold and 171-fold more selective to JAK1 and JAK3, respectively. In JAK2V617F-dependent cell lines, WWQ-131 efficaciously inhibited cell proliferation, induced cell cycle arrest at the G2/M phase and apoptosis, and blocked the aberrant activation of JAK2 signaling pathway. In a mouse Ba/F3_JAK2V617F driven disease model, WWQ-131 effectively suppressed STAT5 phosphorylation in spleen and liver, and inhibited Ba/F3_JAK2V617F cells spreading and proliferation in vivo. In addition, WWQ-131 suppressed rhEPO-induced extramedullary erythropoiesis and polycythemia in mice, as well as hematocrits and spleen sizes, especially had no effect on white blood cell count. Furthermore, WWQ-131 (75 mg/kg) exhibited stronger therapeutic effects than fedratinib (120 mg/kg) in these two MPN models. Taken together, this study suggests that WWQ-131 will be a promising candidate for the treatment of MPNs.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Camundongos , Animais , Janus Quinase 2/metabolismo , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/metabolismo , Proliferação de Células , Apoptose , Modelos Animais de Doenças , Mutação
4.
Bioorg Chem ; 126: 105860, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35661525

RESUMO

Bruton's tyrosine kinase (BTK) is a promising target in the treatment of B cell malignancies and autoimmune disorders. Developing selective non-covalent BTK inhibitors is an important strategy to overcome the side effects and drug resistance induced by covalent BTK inhibitors. In this article, we designed and synthesized pyrrolo[1,2-a]quinoxalin-4(5H)-one and imidazo[1,2-a]quinoxalin-4(5H)-one based selective noncovalent BTK inhibitors via scaffold hopping from BMS-986142 and investigated their biological activities. Among the synthesized compounds, pyrrolo[1,2-a]quinoxalin-4(5H)-one derivatives 2 and 4 showed great BTK inhibition potency with IC50 value at 7.41 nM and 11.4 nM, respectively. Besides, they showed equivalent or even better potency in U937 and Ramos cells than BMS-986142. The kinase selectivity profiling study illustrated the excellent selectivity of compound 2 against a panel of 468 kinases. In U937 xenograft models, compound 2 could significantly inhibit tumor growth with TGI = 65.61%. In all, we provided a new scaffold as non-covalent selective BTK inhibitors and the representative compounds exhibited potency both in vitro and in vivo.


Assuntos
Inibidores de Proteínas Quinases , Quinoxalinas , Tirosina Quinase da Agamaglobulinemia , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinoxalinas/farmacologia , Relação Estrutura-Atividade
5.
J Med Chem ; 65(3): 2694-2709, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35099969

RESUMO

Bruton's tyrosine kinase (BTK) is an attractive therapeutic target in the treatment of cancer, inflammation, and autoimmune diseases. Covalent and noncovalent BTK inhibitors have been developed, among which covalent BTK inhibitors have shown great clinical efficacy. However, some of them could produce adverse effects, such as diarrhea, rash, and platelet dysfunction, which are associated with the off-target inhibition of ITK and EGFR. In this study, we disclosed a series of pteridine-7(8H)-one derivatives as potent and selective covalent BTK inhibitors, which were optimized from 3z, an EGFR inhibitor previously reported by our group. Among them, compound 24a exhibited great BTK inhibition activity (IC50 = 4.0 nM) and high selectivity in both enzymatic (ITK >250-fold, EGFR >2500-fold) and cellular levels (ITK >227-fold, EGFR 27-fold). In U-937 xenograft models, 24a significantly inhibited tumor growth (TGI = 57.85%) at a 50 mg/kg dosage. Accordingly, 24a is a new BTK inhibitor worthy of further development.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Pteridinas/uso terapêutico , Tirosina Quinase da Agamaglobulinemia/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Pteridinas/síntese química , Pteridinas/metabolismo , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Bioorg Chem ; 119: 105541, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34910982

RESUMO

Bruton's tyrosine kinase (BTK) is an attractive target for the treatment of malignancy and inflammatory/autoimmune diseases. Most of the covalent BTK inhibitors would induce off-target side effects and drug resistance. To improve the drug safety of BTK inhibitors, non-covalent inhibitors have attracted more and more attention. We designed a series of novel pyrido[3,4-b]indol-1-one derivatives (N-A and N-B) via scaffold hopping from CGI-1746. The structure-activity relationship (SAR) of the newly-synthesized compounds was explored. The results showed that compounds 12 and 18 exhibited potent enzymatic potency against BTK with IC50 values of 0.22 µM and 0.19 µM, respectively. In lymphoma cell lines U-937 cells and Ramos cells, compounds 12 and 18 displayed comparative antiproliferative activity with Ibrutinib. Moreover, compound 12 induced G1-phase cell cycle arrest and apoptosis in U-937 cells. And it could effectively inhibit tumor growth in U-937 xenograft mouse model (TGI = 41.90% at 50 mg/kg). In all, the new pyrido[3,4-b]indol-1-one derivatives have the antitumor potency by BTK inhibition and were worthy of further exploration.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Antineoplásicos/farmacologia , Descoberta de Drogas , Indóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Tirosina Quinase da Agamaglobulinemia/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indóis/síntese química , Indóis/química , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
7.
Bioorg Med Chem Lett ; 30(8): 127048, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32122740

RESUMO

Janus kinases (JAKs) including JAK1, JAK2, JAK3, and TYK2 are members of a family of intracellular nonreceptor tyrosine kinases, which have been demonstrated to be critical in the cell signaling pathway and involved in inflammatory diseases and cancer. V617F mutation in JAK2 has been implicated in polycythaemia vera (PV), essential thrombocythaemia (ET) and myelofibrosis (MF). Here, we described the design, synthesis, and biological evaluation of a series of 2-aminopyridine derivatives. The results of enzymatic activity assays supported compound 16m-(R) as a potential and selective JAK2 inhibitor, which exhibited high inhibitory activity with an IC50 of 3 nM against JAK2, and 85- and 76-fold selectivity over JAK1 and JAK3, respectively. Structure-activity relationships (SAR) and mechanistic analysis demonstrated that 16m-(R) might be a promising selective JAK2 inhibitor for further study.


Assuntos
Aminopiridinas/farmacologia , Descoberta de Drogas , Janus Quinase 2/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Aminopiridinas/síntese química , Aminopiridinas/química , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Janus Quinase 2/metabolismo , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
8.
Acta Pharmacol Sin ; 41(3): 415-422, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31316181

RESUMO

Bruton's tyrosine kinase (BTK) is a key component of the B cell receptor (BCR) signaling pathway and plays a crucial role in B cell malignancies and autoimmune disorders; thus, it is an attractive target for the treatment of B cell related diseases. Here, we evaluated the BTK inhibitory activity of a series of pyrimido[4,5-d][1,3]oxazin-2-one derivatives. Combining this evaluation with structure-activity relationship (SAR) analysis, we found that compound 2 exhibited potent BTK kinase inhibitory activity, with an IC50 of 7 nM. This derivative markedly inhibited BTK activation in TMD8 B cell lymphoma cells and thus inhibited the in vitro growth of the cells. Further studies revealed that compound 2 dose dependently arrested TMD8 cells at G1 phase, accompanied by decreased levels of Rb, phosphorylated Rb, and cyclin D1. Moreover, following treatment with compound 2, TMD8 cells underwent apoptosis associated with PARP and caspase 3 cleavage. Interestingly, the results of the kinase activity assay on a small panel of 35 kinases showed that the kinase selectivity of compound 2 was superior to that of the first-generation inhibitor ibrutinib, suggesting that compound 2 could be a second-generation inhibitor of BTK. In conclusion, we identified a potent and highly selective BTK inhibitor worthy of further development.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Antineoplásicos/farmacologia , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Tirosina Quinase da Agamaglobulinemia/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
9.
Bioorg Med Chem ; 27(15): 3390-3395, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31221612

RESUMO

Aberrant activation of B cell receptor (BCR) signal transduction cascade contributes to the propagation and maintenance of B cell malignancies. The discovery of mall molecules with high potency and selectivity against Bruton's tyrosine kinase (BTK), a key signaling molecule in this cascade, is particularly urgent in modern treatment regimens. Herein, a series of pyrimido[4,5-d]pyrimidine-2,4(1H,3H)-dione derivatives were reported as potent BTK inhibitors. Compounds 17 and 18 displayed strong BTK inhibitory activities in the enzymatic inhibition assay, with the IC50 values of 1.2 and 0.8 nM, respectively, which were comparable to that of ibrutinib (IC50 = 0.6 nM). Additionally, compound 17 had a more selective profile over EGFR than ibrutinib. According to the putative binding poses, the molecular basis of this series of compounds with respect to potency against BTK and selectivity over EGFR was elucidated. In further experiments at cellular level, compounds 17 and 18 significantly inhibited the proliferation of Ramos and TMD8 cells. And they arrested 75.4% and 75.2% of TMD8 cells in G1 phase, respectively, at the concentration of 1 µM.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Antineoplásicos/farmacologia , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Tirosina Quinase da Agamaglobulinemia/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
10.
Bioorg Med Chem Lett ; 29(12): 1507-1513, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30981578

RESUMO

Janus Kinase 2 (JAK2) is a kind of intracellular non-receptor protein tyrosine kinase and has been certified as an important target for the treatment of myeloproliferative neoplasms and rheumatoid arthritis. However, the low selectivity and potential safety issues restrict the clinical applications of JAK2 inhibitors. Here we found that crizotinib showed good inhibitory activity against JAK2 by enzymatic assays (IC50 = 27 nM). Then we carried out structure-based drug design and synthesized a series of compounds with an aminopyridine scaffold. Finally, compound 12k and 12l were identified as the promising inhibitors of JAK2, which exhibited high inhibitory activity (IC50 = 6 nM and 3 nM, respectively) and selectivity for JAK2 over JAK1 and JAK3, and showed potent antiproliferative activities toward HEL human erythroleukemia cells. Moreover, 12k suppressed symptoms of the collagen-induced arthritis (CIA) model in rats.


Assuntos
Janus Quinase 2/antagonistas & inibidores , Pirimidinas/uso terapêutico , Animais , Humanos , Estrutura Molecular , Pirimidinas/farmacologia , Ratos , Relação Estrutura-Atividade
11.
Medchemcomm ; 9(4): 697-704, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108960

RESUMO

Bruton's tyrosine kinase (BTK) plays a critical role in B cell receptor (BCR)-mediated signaling pathways responsible for the development and function of B cells, which makes it an attractive target for the treatment of many types of B-cell malignancies. Herein, a series of N5-substituted 6,7-dioxo-6,7-dihydropteridine-based, irreversible BTK inhibitors were reported with IC50 values ranging from 1.9 to 236.6 nM in the enzymatic inhibition assay. Compounds 6 and 7 significantly inhibited the proliferation of Ramos cells which overexpress the BTK enzyme, as well as the autophosphorylation of BTK at Tyr223 and the activation of its downstream signaling molecule PLCγ2. Overall, this series of compounds could provide a promising starting point for further development of potent BTK inhibitors for B-cell malignancy treatment.

12.
Artigo em Inglês | MEDLINE | ID: mdl-30096607

RESUMO

MDH-7 (2,3,9-tri-O-acetyl-5,6-dideoxy-1,10-di-[N4'-pentoxycarbonyl-5'-fluoro cytosine]-4-ulose 1,4: 7,10-difuranose-4,8-pyranose) is a novel anti-tumor drug candidate. To study the pharmacokinetic interaction between MDH-7 and 5-fluorouracil (5-FU), a sensitive and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed to simultaneously determine the concentrations of MDH-7 and 5-fluorouracil (5-FU) in rat plasma. Plasma samples were prepared by simple liquid-liquid extraction with ethyl acetate. Chromatographic separation was performed on a Waters XBridge™ C18 column (5 µm, 2.1 mm × 150 mm) with the mobile phase of methanol and H2O (80:20, v/v). The ESI positive and negative ion switch was operated in the multiple reactions monitoring (MRM) mode. The calibration curves showed good linearity (r2 > 0.99) over the ranges of 50-8000 ng/mL for MDH-7 and 10-2000 ng/mL for 5-FU, respectively. The lower limit of quantitations (LLOQs) was 50 ng/mL (MDH-7) and 10 ng/mL (5-FU) with relative standard deviation (RSD) < 13.0%. The proposed method was successfully applied to simultaneous assessment of pharmacokinetic drug-drug interaction between MDH-7 and 5-FU in rats.


Assuntos
Antimetabólitos Antineoplásicos/sangue , Cromatografia Líquida/métodos , Citosina/análogos & derivados , Fluoruracila/sangue , Nucleosídeos de Pirimidina/sangue , Espectrometria de Massas em Tandem/métodos , Animais , Antimetabólitos Antineoplásicos/química , Antimetabólitos Antineoplásicos/farmacocinética , Citosina/sangue , Citosina/química , Citosina/farmacocinética , Estabilidade de Medicamentos , Feminino , Fluoruracila/química , Fluoruracila/farmacocinética , Modelos Lineares , Masculino , Nucleosídeos de Pirimidina/química , Nucleosídeos de Pirimidina/farmacocinética , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Rapid Commun Mass Spectrom ; 30(7): 1001-10, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26969944

RESUMO

RATIONALE: Our previous preliminary pharmacokinetic study demonstrated that the novel double pyrimidine tricyclic nucleoside MDH-7 in rats had a very short half-life (<30 min) after oral administration. As a result, the in vivo metabolic profile of MDH-7 should be investigated during early stages of drug development to better select drug candidates. METHODS: In this study, a rapid method was developed to identify the metabolites of MDH-7 in rat urine by means of ultra-performance liquid chromatography (UPLC) coupled with electrospray ionization mass spectrometry (ESI-MS) using a triple quadrupole linear ion trap instrument. MDH-7 and its metabolites were detected and characterized by the combined use of the multiple reaction monitoring-information-dependent acquisition-enhanced product ion (MRM-IDA-EPI) mode and the precursor scan information-dependent acquisition-enhanced product ion (PREC-IDA-EPI) mode. RESULTS: Ten novel metabolites of MDH-7 were identified and characterized in rat urine by LC/ESI-MS and collision-induced dissociation tandem mass spectrometry (CID-MS/MS) analyses. M1 was identified as 5-fluoro-N(4) -[(pentyloxy)carbonyl]cytosine; M2 and M3 were formed by hydroxylation products of M1. Metabolites M4-M10 were formed by a series of degradation reactions such as: deacetylation, hydroxylation, loss of the defluorocytosine base, oxidative-deamination, loss of the defluorouracil base, N-dealkylation and amide hydrolysis. CONCLUSIONS: Based on the profiles of the metabolites, possible metabolic pathways of MDH-7 in rats were proposed for the first time. This study provides new and available information on the metabolism of MDH-7 which is very useful to further understand its in vivo metabolic fate. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Antineoplásicos/química , Antineoplásicos/urina , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Masculino , Ratos , Ratos Sprague-Dawley
14.
BMC Cancer ; 14: 689, 2014 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-25241619

RESUMO

BACKGROUND: Hypericum japonicum Thunb. ex Murray is widely used as an herbal medicine for the treatment of hepatitis and tumours in China. However, the molecular mechanisms of its effects are unclear. Our previous research showed that extracts of H. japonicum can induce apoptosis in leukaemia cells. We also previously systematically analysed and isolated the chemical composition of H. japonicum. METHODS: The fluorescence polarisation experiment was used to screen for inhibitors of Bcl-2 proteins which are proved as key proteins in apoptosis. The binding mode was modelled by molecular docking. We investigated the proliferation attenuating and apoptosis inducing effects of active compound on cancer cells by MTT assay and flow cytometry analysis. Activation of caspases were tested by Western blot. A broad-spectrum caspase inhibitor Z-VAD-FMK was used to investigate the caspases-dependence. In addition, co-immunoprecipitation was performed to analyse the inhibition of heterodimerization between anti-apoptotic Bcl-2 proteins with pro-apoptotic proteins. Moreover, in vivo activity was tested in a mouse xenograph tumour model. RESULT: Jacarelhyperol A (Jac-A), a characteristic constituent of H. japonicum, was identified as a potential Bcl-2 inhibitor. Jac-A showed binding affinities to Bcl-xL, Bcl-2, and Mcl-1 with Ki values of 0.46 µM, 0.43 µM, and 1.69 µM, respectively. This is consistent with computational modelling results, which show that Jac-A presents a favorable binding mode with Bcl-xL in the BH3-binding pocket. In addition, Jac-A showed potential growth inhibitory activity in leukaemia cells with IC50 values from 1.52 to 6.92 µM and significantly induced apoptosis of K562 cells by promoting release of cytochrome c and activating the caspases. Jac-A also been proved that its effect is partly caspases-dependent and can disrupt the heterodimerization between anti-apoptotic Bcl-2 proteins with pro-apoptotic proteins. Moreover, Jac-A dose-dependently inhibited human K562 cell growth in a mouse xenograph tumour model with low toxicity. CONCLUSION: In this study, a characteristic constituent of H. japonicum, Jac-A, was shown to induce apoptosis in leukaemia cells by mediating the Bcl-2 proteins. Therefore, we propose a new lead compound for cancer therapy with a low toxicity, and have provided evidence for using H. japonicum as an anti-cancer herb.


Assuntos
Apoptose/efeitos dos fármacos , Leucemia/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Xantenos/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Sítios de Ligação , Caspases/metabolismo , Linhagem Celular Tumoral , Citocromos c/metabolismo , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Concentração Inibidora 50 , Células K562 , Leucemia/tratamento farmacológico , Leucemia/patologia , Camundongos , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Multimerização Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/química , Xantenos/química , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína bcl-X/química , Proteína bcl-X/metabolismo
15.
Bioorg Med Chem Lett ; 23(11): 3329-33, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23608764

RESUMO

Eleven compounds were identified as estrogen receptor modulators from an in-house natural product database (NPD) by structure-based virtual screening for ERα and ERß. Among them, 3 compounds were confirmed as ER agonists and 8 compounds were confirmed as ER antagonists by yeast two-hybrid (Y2H) assay, with EC50 values ranging from several micromolar to 100 micromolar. In this study, a novel series of cycloartane triterpenoids isolated from Schisandra glaucescens Diels was found to have ER antagonistic effect, the most potent antagonist of which exhibited activity with EC50 value of 2.55 and 4.68 µM for ERα and ERß, respectively. Moreover, the types of modulation and subtype selectivity were also investigated through molecular docking simulation.


Assuntos
Receptor alfa de Estrogênio/agonistas , Receptor beta de Estrogênio/agonistas , Bases de Dados Factuais , Avaliação Pré-Clínica de Medicamentos , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/metabolismo , Ligação Proteica , Schisandra/química , Relação Estrutura-Atividade , Triterpenos/química , Triterpenos/isolamento & purificação , Triterpenos/metabolismo
16.
Bioinformatics ; 29(2): 292-4, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23162083

RESUMO

SUMMARY: Although in silico drug discovery approaches are crucial for the development of pharmaceuticals, their potential advantages in agrochemical industry have not been realized. The challenge for computer-aided methods in agrochemical arena is a lack of sufficient information for both pesticides and their targets. Therefore, it is important to establish such knowledge repertoire that contains comprehensive pesticides' profiles, which include physicochemical properties, environmental fates, toxicities and mode of actions. Here, we present an integrated platform called Pesticide-Target interaction database (PTID), which comprises a total of 1347 pesticides with rich annotation of ecotoxicological and toxicological data as well as 13 738 interactions of pesticide-target and 4245 protein terms via text mining. Additionally, through the integration of ChemMapper, an in-house computational approach to polypharmacology, PTID can be used as a computational platform to identify pesticides targets and design novel agrochemical products. AVAILABILITY: http://lilab.ecust.edu.cn/ptid/. CONTACT: hlli@ecust.edu.cn; xhqian@ecust.edu.cn SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Agroquímicos/toxicidade , Bases de Dados de Compostos Químicos , Praguicidas/toxicidade , Agroquímicos/química , Agroquímicos/farmacologia , Mineração de Dados , Descoberta de Drogas , Internet , Praguicidas/química , Praguicidas/farmacologia , Proteínas/química , Proteínas/efeitos dos fármacos , Software , Integração de Sistemas , Interface Usuário-Computador
17.
Invest New Drugs ; 30(2): 490-507, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21080210

RESUMO

Receptor tyrosine kinases (RTKs) modulate a variety of cellular events, including cell proliferation, differentiation, mobility and apoptosis. In addition, RTKs have been validated as targets for cancer therapies. Microtubules are another class of proven targets for many clinical anticancer drugs. Here, we report that 1-(4-chloro-3-(trifluoromethyl) phenyl)-3-(2-cyano-4-hydroxyphenyl)urea (D181) functions as both a receptor tyrosine kinase inhibitor and a tubulin polymerization enhancer. D181 displayed potent inhibitory activities against a panel of RTKs, including Flt3, VEGFR, cKit, FGFR1 and PDGFRß. D181 also enhanced tubulin polymerization and modified the secondary structure of tubulin proteins to disrupt their dynamic instability. Because of synergistic cooperation, D181 strongly inhibited the proliferation of various cancer cell lines, induced LoVo cell cycle arrest in the G1 and M phases and suppressed tumor growth in nude mice bearing human LoVo and HT29 xenografts. Our studies have provided a new, promising lead compound and novel clues for multi-target anticancer drug design and development.


Assuntos
Antineoplásicos/farmacologia , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Moduladores de Tubulina/farmacologia , Sequência de Aminoácidos , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Células HT29 , Células HeLa , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Concentração Inibidora 50 , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microtúbulos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Células NIH 3T3 , Neoplasias/irrigação sanguínea , Neoplasias/enzimologia , Neoplasias/patologia , Neovascularização Patológica/enzimologia , Neovascularização Patológica/prevenção & controle , Compostos de Fenilureia/química , Fosforilação , Conformação Proteica , Inibidores de Proteínas Quinases/química , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA