Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Cells ; 12(15)2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37566018

RESUMO

SARS-CoV-2 infection triggers distinct patterns of disease development characterized by significant alterations in host regulatory responses. Severe cases exhibit profound lung inflammation and systemic repercussions. Remarkably, critically ill patients display a "lipid storm", influencing the inflammatory process and tissue damage. Sphingolipids (SLs) play pivotal roles in various cellular and tissue processes, including inflammation, metabolic disorders, and cancer. In this study, we employed high-resolution mass spectrometry to investigate SL metabolism in plasma samples obtained from control subjects (n = 55), COVID-19 patients (n = 204), and convalescent individuals (n = 77). These data were correlated with inflammatory parameters associated with the clinical severity of COVID-19. Additionally, we utilized RNAseq analysis to examine the gene expression of enzymes involved in the SL pathway. Our analysis revealed the presence of thirty-eight SL species from seven families in the plasma of study participants. The most profound alterations in the SL species profile were observed in patients with severe disease. Notably, a predominant sphingomyelin (SM d18:1) species emerged as a potential biomarker for COVID-19 severity, showing decreased levels in the plasma of convalescent individuals. Elevated SM levels were positively correlated with age, hospitalization duration, clinical score, and neutrophil count, as well as the production of IL-6 and IL-8. Intriguingly, we identified a putative protective effect against disease severity mediated by SM (d18:1/24:0), while ceramide (Cer) species (d18:1/24:1) and (d18:1/24:0)were associated with increased risk. Moreover, we observed the enhanced expression of key enzymes involved in the SL pathway in blood cells from severe COVID-19 patients, suggesting a primary flow towards Cer generation in tandem with SM synthesis. These findings underscore the potential of SM as a prognostic biomarker for COVID-19 and highlight promising pharmacological targets. By targeting sphingolipid pathways, novel therapeutic strategies may emerge to mitigate the severity of COVID-19 and improve patient outcomes.


Assuntos
COVID-19 , Esfingomielinas , Humanos , Prognóstico , SARS-CoV-2/metabolismo , Ceramidas/metabolismo , Esfingolipídeos/metabolismo , Biomarcadores
2.
Drug Dev Res ; 83(7): 1623-1640, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35989498

RESUMO

The global emergence of coronavirus disease 2019 (COVID-19) has caused substantial human casualties. Clinical manifestations of this disease vary from asymptomatic to lethal, and the symptomatic form can be associated with cytokine storm and hyperinflammation. In face of the urgent demand for effective drugs to treat COVID-19, we have searched for candidate compounds using in silico approach followed by experimental validation. Here we identified celastrol, a pentacyclic triterpene isolated from Tripterygium wilfordii Hook F, as one of the best compounds out of 39 drug candidates. Celastrol reverted the gene expression signature from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected cells and irreversibly inhibited the recombinant forms of the viral and human cysteine proteases involved in virus invasion, such as Mpro (main protease), PLpro (papain-like protease), and recombinant human cathepsin L. Celastrol suppressed SARS-CoV-2 replication in human and monkey cell lines and decreased interleukin-6 (IL-6) secretion in the SARS-CoV-2-infected human cell line. Celastrol acted in a concentration-dependent manner, with undetectable signs of cytotoxicity, and inhibited in vitro replication of the parental and SARS-CoV-2 variant. Therefore, celastrol is a promising lead compound to develop new drug candidates to face COVID-19 due to its ability to suppress SARS-CoV-2 replication and IL-6 production in infected cells.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus , Triterpenos Pentacíclicos , Humanos , Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Interleucina-6 , Simulação de Acoplamento Molecular , Triterpenos Pentacíclicos/farmacologia , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
3.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35886983

RESUMO

Melanoma is a highly metastatic and rapidly progressing cancer, a leading cause of mortality among skin cancers. The melanoma microenvironment, formed from the activity of malignant cells on the extracellular matrix and the recruitment of immune cells, plays an active role in the development of drug resistance and tumor recurrence, which are clinical challenges in cancer treatment. These tumoral metabolic processes are affected by proteins, including Galectin-3 (Gal-3), which is extensively involved in cancer development. Previously, we characterized a partially methylated mannogalactan (MG-Pe) with antimelanoma activities. In vivo models of melanoma were used to observe MG-Pe effects in survival, spontaneous, and experimental metastases and in tissue oxidative stress. Analytical assays for the molecular interaction of MG-Pe and Gal-3 were performed using a quartz crystal microbalance, atomic force microscopy, and contact angle tensiometer. MG-Pe exhibits an additive effect when administered together with the chemotherapeutic agent dacarbazine, leading to increased survival of treated mice, metastases reduction, and the modulation of oxidative stress. MG-Pe binds to galectin-3. Furthermore, MG-Pe antitumor effects were substantially reduced in Gal-3/KO mice. Our results showed that the novel Gal-3 ligand, MG-Pe, has both antitumor and antimetastatic effects, alone or in combination with chemotherapy.


Assuntos
Antineoplásicos , Galectina 3 , Melanoma , Neoplasias Cutâneas , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Dacarbazina/metabolismo , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Galectina 3/metabolismo , Galectina 3/farmacologia , Galectina 3/uso terapêutico , Ligantes , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Camundongos , Recidiva Local de Neoplasia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/fisiologia
4.
Methods Mol Biol ; 2442: 1-40, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35320517

RESUMO

Galectins are a large family of carbohydrate binding proteins with members in nearly every lineage of multicellular life. Through tandem and en-mass genome duplications, over 15 known vertebrate galectins likely evolved from a single common ancestor extant in pre-chordate lineages. While galectins have divergently evolved numerous functions, some of which do not involve carbohydrate recognition, the vast majority of the galectins have retained the conserved ability to bind variably modified polylactosamine (polyLacNAc) residues on glycans that modify proteins and lipids on the surface of host cells and pathogens. In addition to their direct role in microbial killing, many proposed galectin functions in the immune system and cancer involve crosslinking glycosylated receptors and modifying signaling pathways or sensitivity to antigen from the outside in. However, a large body of work has uncovered intracellular galectin functions mediated by carbohydrate- and non-carbohydrate-dependent interactions. In the cytoplasm, galectins can tune intracellular kinase and G-protein-coupled signaling cascades important for nutrient sensing, cell cycle progression, and transformation. Particularly, but interconnected pathways, cytoplasmic galectins serve the innate immune system as sensors of endolysosomal damage, recruiting and assembling the components of autophagosomes during intracellular infection through carbohydrate-dependent and -independent activities. In the nucleus, galectins participate in pre-mRNA splicing perhaps through interactions with non-coding RNAs required for assembly of spliceosomes. Together, studies of galectin function paint a picture of a functionally dynamic protein family recruited during eons of evolution to regulate numerous essential cellular processes in the context of multicellular life.


Assuntos
Galectinas , Sistema Imunitário , Ciclo Celular , Galectinas/metabolismo , Glicosilação , Sistema Imunitário/metabolismo , Transdução de Sinais
5.
Methods Mol Biol ; 2442: 289-306, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35320532

RESUMO

Galectins are multifunctional glycan-binding proteins present in various tissues that participate in multiple physiological and pathological processes and are considered as not only biomarkers of human diseases but also molecular targets for treating cancer and inflammatory illnesses in many organs. In the glycobiology field, it is crucial to determine the pattern of galectin expression and location in cells and tissues. Confocal microscopy is a powerful imaging technology that represents a unique approach to investigate the expression and location of biomolecules in various tissues and cells. The confocal microscope acquires images of the specimen through the reflected or fluorescent light from the objective's focal plane, using laser light focused on a small spot inside the tissue or cell. This technique provides high-resolution and high-contrast images without artifacts generated by conventional microscopy and enables reconstruction of virtual tridimensional images by acquiring multiple sections from several focal planes, which makes it possible to obtain the precise spatial location of any cellular structure or molecule. Furthermore, confocal microscopy is a non-invasive tissue imaging strategy used in clinical practices. We describe herein the immunofluorescence confocal method for examining galectins in frozen tissue sections and mammalian cell culture.


Assuntos
Galectinas , Testes Imunológicos , Animais , Técnicas de Cultura de Células , Imunofluorescência , Humanos , Mamíferos , Microscopia Confocal/métodos
6.
Viruses ; 13(12)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34960790

RESUMO

Uncontrolled inflammatory responses play a critical role in coronavirus disease (COVID-19). In this context, because the triggering-receptor expressed on myeloid cells-1 (TREM-1) is considered an intrinsic amplifier of inflammatory signals, this study investigated the role of soluble TREM-1 (sTREM-1) as a biomarker of the severity and mortality of COVID-19. Based on their clinical scores, we enrolled COVID-19 positive patients (n = 237) classified into mild, moderate, severe, and critical groups. Clinical data and patient characteristics were obtained from medical records, and their plasma inflammatory mediator profiles were evaluated with immunoassays. Plasma levels of sTREM-1 were significantly higher among patients with severe disease compared to all other groups. Additionally, levels of sTREM-1 showed a significant positive correlation with other inflammatory parameters, such as IL-6, IL-10, IL-8, and neutrophil counts, and a significant negative correlation was observed with lymphocyte counts. Most interestingly, sTREM-1 was found to be a strong predictive biomarker of the severity of COVID-19 and was related to the worst outcome and death. Systemic levels of sTREM-1 were significantly correlated with the expression of matrix metalloproteinases (MMP)-8, which can release TREM-1 from the surface of peripheral blood cells. Our findings indicated that quantification of sTREM-1 could be used as a predictive tool for disease outcome, thus improving the timing of clinical and pharmacological interventions in patients with COVID-19.


Assuntos
Biomarcadores/sangue , COVID-19/diagnóstico , COVID-19/mortalidade , Leucócitos/metabolismo , Metaloproteinase 8 da Matriz/metabolismo , Índice de Gravidade de Doença , Receptor Gatilho 1 Expresso em Células Mieloides/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Brasil , Feminino , Humanos , Inflamação , Interleucina-10/sangue , Interleucina-6/sangue , Interleucina-8/sangue , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Estudos Prospectivos , SARS-CoV-2 , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo , Adulto Jovem
7.
Biochem Biophys Res Commun ; 521(3): 674-680, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31685208

RESUMO

Galectin-3 (Gal-3) is a multifunctional glycan-binding protein that participates in many pathophysiological events and has been described as a biomarker and potential therapeutic target for severe disorders, such as cancer. Several probes for Gal-3 or its ligands have been developed, however both the pathophysiological mechanisms and potential biomedical applications of Gal-3 remain not fully assessed. Molecular imaging using bioluminescent probes provides great sensitivity for in vivo and in vitro analysis for both cellular and whole multicellular organism tracking and target detection. Here, we engineered a chimeric molecule consisting of Renilla luciferase fused with mouse Gal-3 (RLuc-mGal-3). RLuc-mGal-3 preparation was highly homogenous, soluble, active, and has molecular mass of 65,870.95 Da. This molecule was able to bind to MKN45 cell surface, property which was inhibited by the reduction of Gal-3 ligands on the cell surface by the overexpression of ST6GalNAc-I. In order to obtain an efficient and stable delivery system, RLuc-mGal-3 was adsorbed to poly-lactic acid nanoparticles, which increased binding to MKN45 cells in vitro. Furthermore, bioluminescence imaging showed that RLuc-mGal-3 was able to indicate the presence of implanted tumor in mice, event drastically inhibited by the presence of lactose. This novel bioluminescent chimeric molecule offers a safe and highly sensitive alternative to fluorescent and radiolabeled probes with potential application in biomedical research for a better understanding of the distribution and fate of Gal-3 and its ligands in vitro and in vivo.


Assuntos
Galectina 3/metabolismo , Luciferases de Renilla/metabolismo , Substâncias Luminescentes/metabolismo , Neoplasias/diagnóstico por imagem , Polissacarídeos/metabolismo , Animais , Linhagem Celular Tumoral , Galectina 3/análise , Galectina 3/genética , Humanos , Luciferases de Renilla/análise , Luciferases de Renilla/genética , Substâncias Luminescentes/análise , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/metabolismo , Imagem Óptica , Polissacarídeos/análise , Ligação Proteica , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
8.
Glycoconj J ; 37(1): 77-93, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31823246

RESUMO

Dystroglycanopathies are diseases characterized by progressive muscular degeneration and impairment of patient's quality of life. They are associated with altered glycosylation of the dystrophin-glycoprotein (DGC) complex components, such as α-dystroglycan (α-DG), fundamental in the structural and functional stability of the muscle fiber. The diagnosis of dystroglycanopathies is currently based on the observation of clinical manifestations, muscle biopsies and enzymatic measures, and the available monoclonal antibodies are not specific for the dystrophic hypoglycosylated muscle condition. Thus, modified α-DG mucins have been considered potential targets for the development of new diagnostic strategies toward these diseases. In this context, this work describes the synthesis of the hypoglycosylated α-DG mimetic glycopeptide NHAc-Gly-Pro-Thr-Val-Thr[αMan]-Ile-Arg-Gly-BSA (1) as a potential tool for the development of novel antibodies applicable to dystroglycanopathies diagnosis. Glycopeptide 1 was used for the development of polyclonal antibodies and recombinant monoclonal antibodies by Phage Display technology. Accordingly, polyclonal antibodies were reactive to glycopeptide 1, which enables the application of anti-glycopeptide 1 antibodies in immune reactive assays targeting hypoglycosylated α-DG. Regarding monoclonal antibodies, for the first time variable heavy (VH) and variable light (VL) immunoglobulin domains were selected by Phage Display, identified by NGS and described by in silico analysis. The best-characterized VH and VL domains were cloned, expressed in E. coli Shuffle T7 cells, and used to construct a single chain fragment variable that recognized the Glycopeptide 1 (GpαDG1 scFv). Molecular modelling of glycopeptide 1 and GpαDG1 scFv suggested that their interaction occurs through hydrogen bonds and hydrophobic contacts involving amino acids from scFv (I51, Y33, S229, Y235, and P233) and R8 and α-mannose from Glycopeptide 1.


Assuntos
Anticorpos Monoclonais/imunologia , Distroglicanas/imunologia , Glicoproteínas/imunologia , Mucinas/imunologia , Síndrome de Walker-Warburg/diagnóstico , Distroglicanas/química , Glicoproteínas/síntese química , Humanos , Mucinas/química
9.
Planta Med ; 84(15): 1141-1148, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29763945

RESUMO

Piperlongumine is an amide alkaloid found in Piperaceae species that shows a broad spectrum of biological properties, including antitumor and antiparasitic activities. Herein, the leishmanicidal effect of piperlongumine and its derivatives produced by a biomimetic model using metalloporphyrins was investigated. The results showed that IC50 values of piperlongumine in promastigote forms of Leishmania infantum and Leishmania amazonensis were 7.9 and 3.3 µM, respectively. The IC50 value of piperlongumine in the intracellular amastigote form of L. amazonensis was 0.4 µM, with a selectivity index of 25. The piperlongumine biomimetic derivatives, Ma and Mb, also showed leishmanicidal effects. We also carried out an in vitro metabolic degradation study showing that Ma is the most stable piperlongumine derivative in rat liver microsome incubations. The results presented here indicate that piperlongumine is a potential leishmanicidal candidate and support the biomimetic approach for development of new antileishmanial derivatives.


Assuntos
Anti-Helmínticos/farmacologia , Antiprotozoários/farmacologia , Dioxolanos/farmacologia , Leishmania infantum/efeitos dos fármacos , Piperaceae/química , Piperidonas/farmacologia , Animais , Anti-Helmínticos/química , Antiprotozoários/química , Biomimética , Dioxolanos/química , Feminino , Concentração Inibidora 50 , Fígado/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Metaloporfirinas/metabolismo , Camundongos Endogâmicos BALB C , Microssomos , Piperidonas/química , Ratos
10.
Cell Death Dis ; 8(12): e3176, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215607

RESUMO

Secretory granules released by cytotoxic T lymphocytes (CTLs) are powerful weapons against intracellular microbes and tumor cells. Despite significant progress, there is still limited information on the molecular mechanisms implicated in target-driven degranulation, effector cell survival and composition and structure of the lytic granules. Here, using a proteomic approach we identified a panel of putative cytotoxic granule proteins, including some already known granule constituents and novel proteins that contribute to regulate the CTL lytic machinery. Particularly, we identified galectin-1 (Gal1), an endogenous immune regulatory lectin, as an integral component of the secretory granule machinery and unveil the unexpected function of this lectin in regulating CTL killing activity. Mechanistic studies revealed the ability of Gal1 to control the non-secretory lytic pathway by influencing Fas-Fas ligand interactions. This study offers new insights on the composition of the cytotoxic granule machinery, highlighting the dynamic cross talk between secretory and non-secretory pathways in controlling CTL lytic function.


Assuntos
Degranulação Celular/imunologia , Citotoxicidade Imunológica , Proteína Ligante Fas/genética , Galectina 1/genética , Linfócitos T Citotóxicos/imunologia , Receptor fas/genética , Animais , Proliferação de Células , Proteína Ligante Fas/imunologia , Galectina 1/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteômica , Vesículas Secretórias/química , Vesículas Secretórias/imunologia , Vesículas Secretórias/metabolismo , Transdução de Sinais , Linfócitos T Citotóxicos/citologia , Receptor fas/imunologia
11.
Biochem Biophys Res Commun ; 487(1): 28-33, 2017 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-28365155

RESUMO

Human Leucocyte Antigen-G (HLA-G) is a non classical major histocompatibility complex (MHC) molecule that through RNA splicing can encode seven isoforms which are membrane bound (-G1, -G2, -G3 and -G4) and soluble (-G5, -G6 and -G7). HLA-G is described as important immune suppressor endogenous molecule to favor maternal-fetal tolerance, transplant survival and tumor immune scape. HLA-G shows low protein variability and a unique structural complexity that is related with the expression of different isoforms followed by biochemical processes, such as, proteolytic cleavage, molecular interactions, and protein ubiquitination. Studies with HLA-G have shown difficult to assess the role of the individual isoforms. Thus, the aim of this work was to obtain a HLA-G6 recombinant form. The results indicated the production of high homogeneous preparations of soluble recombinant HLA-G6 (srHLA-G6) with molecular mass 23,603.76 Da, determined by MALD-TOF/TOF. In addition, native and denatured srHLA-G6 were detected by ELISA, using commercial monoclonal antibodies. Finally, we developed a suitable methodology to express srHLA-G6 that could contribute in structural and functional studies involving specific isoforms.


Assuntos
Antígenos HLA-G/química , Antígenos HLA-G/imunologia , Proteínas Recombinantes/química , Sítios de Ligação , Humanos , Peso Molecular , Ligação Proteica , Solubilidade
12.
Chembiochem ; 18(6): 527-538, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28068458

RESUMO

This study presents the synthesis of the novel protected O-glycosylated amino acid derivatives 1 and 2, containing ßGalNAc-SerOBn and ßGalNAc-ThrOBn units, respectively, as mimetics of the natural Tn antigen (αGalNAc-Ser/Thr), along with the solid-phase assembly of the glycopeptides NHAcSer-Ala-Pro-Asp-Thr[αGalNAc]-Arg-Pro-Ala-Pro-Gly-BSA (3-BSA) and NHAcSer-Ala-Pro-Asp-Thr[ßGalNAc]-Arg-Pro-Ala-Pro-Gly-BSA (4-BSA), bearing αGalNAc-Thr or ßGalNAc-Thr units, respectively, as mimetics of MUC1 tumor mucin glycoproteins. According to ELISA tests, immunizations of mice with ßGalNAc-glycopeptide 4-BSA induced higher sera titers (1:320 000) than immunizations with αGalNAc-glycopeptide 3-BSA (1:40 000). Likewise, flow cytometry assays showed higher capacity of the obtained anti-glycopeptide 4-BSA antibodies to recognize MCF-7 tumor cells. Cross-recognition between immunopurified anti-ßGalNAc antibodies and αGalNAc-glycopeptide and vice versa was also verified. Lastly, molecular dynamics simulations and surface plasmon resonance (SPR) showed that ßGalNAc-glycopeptide 4 can interact with a model antitumor monoclonal antibody (SM3). Taken together, these data highlight the improved immunogenicity of the unnatural glycopeptide 4-BSA, bearing ßGalNAc-Thr as Tn antigen isomer.


Assuntos
Anticorpos Monoclonais/metabolismo , Formação de Anticorpos/efeitos dos fármacos , Antígenos Glicosídicos Associados a Tumores/química , Mucina-1/metabolismo , Mucina-1/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Bioensaio/normas , Sequência de Carboidratos , Humanos , Isomerismo , Células MCF-7 , Camundongos , Modelos Biológicos , Simulação de Dinâmica Molecular , Mucina-1/química , Técnicas de Síntese em Fase Sólida , Ressonância de Plasmônio de Superfície
13.
J Mol Recognit ; 30(2)2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27774692

RESUMO

Three isolectins denoted hereforth MBaL-30, MBaL-60, and MBaL-80 were isolated from seeds extract of Momordica balsamina by 30%, 60%, and 80% ammonium sulfate saturations, respectively. The native molecular weights of these lectins, as judged by gel filtration, were 108, 56, and 160 kDa, respectively. On SDS-PAGE, under reduced condition, 27 kDa band was obtained for all isolectins. The lectins hemagglutinating activities were variably inhibited by d-galactose (minimum inhibitory concentrations = 12.5mM, 50mM, and 0.391mM, respectively). MBaL-30 and -60 could agglutinate all human blood types with slight preference for the A and O blood groups, whereas MBaL-80 did not agglutinate B and AB blood types. The 3 isolectins were purified from crude seeds extract, collectively, in a single step on the affinity matrix Lactamyl-Seralose 4B; this purified lectin fraction, which contains all isolectins, is termed MBaL. The N-terminal of MBaL till the 25th amino acid was NLSLSELDFSADTYKSFIKNLRKQL, which shares 88% sequence identity with Momordica charantia lectin type-2 ribosomal inactivating protein from Momordica charantia and 50% with momordin II from Momordica balsamina. MBaL retained 100% activity at up to 50°C for 30 minutes. MBaL-30 and MBaL-60 exhibited maximum activities in the pH range between 4 and 8, while MBaL-80 was showing maximum activity in the pH range between 3 and 5. Treatment of MBaL-30 and MBaL-60 with EDTA completely abolished their hemagglutinating activities. Addition of Zn and Fe ions to the ethylenediaminetetraacetic acid-treated MBaL-30 and MBaL-60 lectins did not only regained the loss of activity but also resulted in 200% to 300% increase in activity, respectively. MBaL-30 and -60 agglutinated gram positive Listeria monocytogenes and Staphylococcus aureus, whereas MBaL-30 could merely agglutinate Escherichia coli. None of these lectins could arrest bacterial growth. Addition of MBaL to cancer cell lines (Gastric cancer cell line (AGS) and Gastric cencer cell line (MKN45), Glioblastoma (ECV-304), and Human urinary bladder cancer cell line (U87-MG)) at varying concentrations did not cause statistically significant changes on cell growth and viability.


Assuntos
Momordica/metabolismo , Lectinas de Plantas/análise , Sementes/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Galactose/metabolismo , Testes de Hemaglutinação , Humanos , Peso Molecular , Lectinas de Plantas/química , Lectinas de Plantas/metabolismo
14.
Oncotarget ; 7(50): 83570-83587, 2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27835877

RESUMO

ST6GalNAc-I, the sialyltransferase responsible for sialyl-Tn (sTn) synthesis, has been previously reported to be positively associated with cancer aggressiveness. Here we describe a novel sTn-dependent mechanism for chemotherapeutic resistance. We show that sTn protects cancer cells against chemotherapeutic-induced cell death by decreasing the interaction of cell surface glycan receptors with galectin-3 and increasing its intracellular accumulation. Moreover, exogenously added galectin-3 potentiated the chemotherapeutics-induced cytotoxicity in sTn non-expressing cells, while sTn overexpressing cells were protected. We also found that the expression of sTn was associated with a reduction in galectin-3-binding sites in human gastric samples tumors. ST6GalNAc-I knockdown restored galectin-3-binding sites on the cell surface and chemotherapeutics sensibility. Our results clearly demonstrate that an interruption of O-glycans extension caused by ST6GalNAc-I enzymatic activity leads to tumor cells resistance to chemotherapeutic drugs, highlighting the need for the development of novel strategies to target galectin-3 and/or ST6GalNAc-I.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Galectina 3/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Animais , Antígenos Glicosídicos Associados a Tumores/genética , Antígenos Glicosídicos Associados a Tumores/metabolismo , Proteínas Sanguíneas , Linhagem Celular Tumoral , Proliferação de Células , Relação Dose-Resposta a Droga , Galectinas , Glicosilação , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Processamento de Proteína Pós-Traducional , Transporte Proteico , Interferência de RNA , Sialiltransferases/genética , Sialiltransferases/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Fatores de Tempo , Transfecção , Carga Tumoral
15.
Sci Rep ; 6: 33633, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27642006

RESUMO

Galectins are proteins involved in diverse cellular contexts due to their capacity to decipher and respond to the information encoded by ß-galactoside sugars. In particular, human galectin-4, normally expressed in the healthy gastrointestinal tract, displays differential expression in cancerous tissues and is considered a potential drug target for liver and lung cancer. Galectin-4 is a tandem-repeat galectin characterized by two carbohydrate recognition domains connected by a linker-peptide. Despite their relevance to cell function and pathogenesis, structural characterization of full-length tandem-repeat galectins has remained elusive. Here, we investigate galectin-4 using X-ray crystallography, small- and wide-angle X-ray scattering, molecular modelling, molecular dynamics simulations, and differential scanning fluorimetry assays and describe for the first time a structural model for human galectin-4. Our results provide insight into the structural role of the linker-peptide and shed light on the dynamic characteristics of the mechanism of carbohydrate recognition among tandem-repeat galectins.


Assuntos
Galectina 4/química , Galectina 4/metabolismo , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Sequência de Aminoácidos , Cristalografia por Raios X , Galectina 4/genética , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica , Estabilidade Proteica , Solubilidade , Relação Estrutura-Atividade , Termodinâmica
16.
Glycoconj J ; 33(6): 853-876, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27526114

RESUMO

Galectin-3 is associated with the development and malignancy of several types of tumor, mediating important tumor-related functions, such as tumorigenesis, neoplastic transformation, tumor cell survival, angiogenesis, tumor metastasis and regulation of apoptosis. Therefore, synthetic galectin-3 inhibitors are of utmost importance for development of new antitumor therapeutic strategies. In this review we present an updated selection of synthetic glycoconjugates inhibitors of tumor-related galectin-3, properly addressed as monosaccharide- and disaccharide-based inhibitors, and multivalent-based inhibitors, disclosuring relevant methods for their synthesis along with their inhibitory activities towards galectin-3. In general, Cu(I)-assisted 1,3-dipolar azide-alkyne cycloaddition (CuAAC) reactions were predominantly applied for the synthesis of the described inhibitors, which had their inhibitory activities against galectin-3 evaluated by fluorescence polarization, surface plasmon resonance (SPR), hemagglutination, ELISA and cell imaging assays. Overall, the presented synthetic glycoconjugates represent frontline galectin-3 inhibitors, finding important biomedical applications in cancer.


Assuntos
Galectina 3/antagonistas & inibidores , Glicoconjugados , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Animais , Proteínas Sanguíneas , Galectina 3/metabolismo , Galectinas , Glicoconjugados/síntese química , Glicoconjugados/química , Glicoconjugados/uso terapêutico , Humanos , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo
17.
Mol Ther ; 24(11): 1949-1964, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27506452

RESUMO

Duchenne muscular dystrophy is the most common genetic muscular dystrophy. It is caused by mutations in the dystrophin gene, leading to absence of muscular dystrophin and to progressive degeneration of skeletal muscle. We have demonstrated that the exon skipping method safely and efficiently brings to the expression of a functional dystrophin in dystrophic CD133+ cells injected scid/mdx mice. Golden Retriever muscular dystrophic (GRMD) dogs represent the best preclinical model of Duchenne muscular dystrophy, mimicking the human pathology in genotypic and phenotypic aspects. Here, we assess the capacity of intra-arterial delivered autologous engineered canine CD133+ cells of restoring dystrophin expression in Golden Retriever muscular dystrophy. This is the first demonstration of five-year follow up study, showing initial clinical amelioration followed by stabilization in mild and severe affected Golden Retriever muscular dystrophy dogs. The occurrence of T-cell response in three Golden Retriever muscular dystrophy dogs, consistent with a memory response boosted by the exon skipped-dystrophin protein, suggests an adaptive immune response against dystrophin.


Assuntos
Antígeno AC133/metabolismo , Imunidade Adaptativa , Distrofia Muscular Animal/terapia , Transplante de Células-Tronco/métodos , Animais , Células Cultivadas , Modelos Animais de Doenças , Cães , Seguimentos , Humanos , Distrofia Muscular Animal/imunologia , Células-Tronco/metabolismo , Transplante Autólogo , Resultado do Tratamento
18.
Mol Immunol ; 76: 22-34, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27344022

RESUMO

Galectin-3, an endogenous glycan-binding protein, is abundantly expressed at sites of inflammation and immune cell activation. Although this lectin has been implicated in the control of T helper (Th) polarization, the mechanisms underlying this effect are not well understood. Here, we investigated the role of endogenous galectin-3 during the course of experimental Leishmania major infection using galectin-3-deficient (Lgals3(-/-)) mice in a BALB/c background and the involvement of Notch signaling pathway in this process. Lgals3(-/-) mice displayed an augmented, although mixed Th1/Th2 responses compared with wild-type (WT) mice. Concomitantly, lymph node and footpad lesion cells from infected Lgals3(-/-) mice showed enhanced levels of Notch signaling components (Notch-1, Jagged1, Jagged2 and Notch target gene Hes-1). Bone marrow-derived dendritic cells (BMDCs) from uninfected Lgals3(-/-) mice also displayed increased expression of the Notch ligands Delta-like-4 and Jagged1 and pro-inflammatory cytokines. In addition, activation of Notch signaling in BMDCs upon stimulation with Jagged1 was more pronounced in Lgals3(-/-) BMDCs compared to WT BMDCs; this condition resulted in increased production of IL-6 by Lgals3(-/-) BMDCs. Finally, addition of exogenous galectin-3 to Lgals3(-/-) BMDCs partially reverted the increased sensitivity to Jagged1 stimulation. Our results suggest that endogenous galectin-3 regulates Notch signaling activation in BMDCs and influences polarization of T helper responses, thus increasing susceptibility to L. major infection.


Assuntos
Células Dendríticas/imunologia , Galectina 3/imunologia , Proteína Jagged-1/imunologia , Receptores Notch/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Western Blotting , Células da Medula Óssea/imunologia , Diferenciação Celular/imunologia , Modelos Animais de Doenças , Citometria de Fluxo , Galectina 3/metabolismo , Leishmania major , Leishmaniose Cutânea/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real
19.
Protein Expr Purif ; 118: 39-48, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26432949

RESUMO

Galectin-4 (Gal4), a tandem-repeat type galectin, is expressed in healthy epithelium of the gastrointestinal tract. Altered levels of Gal4 expression are associated with different types of cancer, suggesting its usage as a diagnostic marker as well as target for drug development. The functional data available for this class of proteins suggest that the wide spectrum of cellular activities reported for Gal4 relies on distinct glycan specificity and structural characteristics of its two carbohydrate recognition domains. In the present work, two independent constructs for recombinant expression of the C-terminal domain of human galectin-4 (hGal4-CRD2) were developed. His6-tagged and untagged recombinant proteins were overexpressed in Escherichia coli, and purified by affinity chromatography followed by gel filtration. Correct folding and activity of hGal4-CRD2 were assessed by circular dichroism and fluorescence spectroscopies, respectively. Diffraction quality crystals were obtained by vapor-diffusion sitting drop setup and the crystal structure of CRD2 was solved by molecular replacement techniques at 1.78 Å resolution. Our work describes the development of important experimental tools that will allow further studies in order to correlate structure and binding properties of hGal4-CRD2 and human galectin-4 functional activities.


Assuntos
Carboidratos/química , Galectina 4/química , Galectina 4/isolamento & purificação , Sítios de Ligação , Biofísica , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Galectina 4/genética , Galectina 4/metabolismo , Expressão Gênica , Humanos , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo
20.
PLoS One ; 9(11): e112474, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25392933

RESUMO

Dengue virus (DENV) is an enveloped RNA virus that is mosquito-transmitted and can infect a variety of immune and non-immune cells. Response to infection ranges from asymptomatic disease to a severe disorder known as dengue hemorrhagic fever. Despite efforts to control the disease, there are no effective treatments or vaccines. In our search for new antiviral compounds to combat infection by dengue virus type 1 (DENV-1), we investigated the role of galectin-1, a widely-expressed mammalian lectin with functions in cell-pathogen interactions and immunoregulatory properties. We found that DENV-1 infection of cells in vitro exhibited caused decreased expression of Gal-1 in several different human cell lines, suggesting that loss of Gal-1 is associated with virus production. In test of this hypothesis we found that exogenous addition of human recombinant Gal-1 (hrGal-1) inhibits the virus production in the three different cell types. This inhibitory effect was dependent on hrGal-1 dimerization and required its carbohydrate recognition domain. Importantly, the inhibition was specific for hrGal-1, since no effect was observed using recombinant human galectin-3. Interestingly, we found that hrGal-1 directly binds to dengue virus and acts, at least in part, during the early stages of DENV-1 infection, by inhibiting viral adsorption and its internalization to target cells. To test the in vivo role of Gal-1 in DENV infection, Gal-1-deficient-mice were used to demonstrate that the expression of endogenous Galectin-1 contributes to resistance of macrophages to in vitro-infection with DENV-1 and it is also important to physiological susceptibility of mice to in vivo infection with DENV-1. These results provide novel insights into the functions of Gal-1 in resistance to DENV infection and suggest that Gal-1 should be explored as a potential antiviral compound.


Assuntos
Vírus da Dengue/classificação , Dengue/metabolismo , Galectina 1/metabolismo , Adsorção , Animais , Antivirais/química , Carboidratos/química , Morte Celular , Linhagem Celular , Linhagem da Célula , Sobrevivência Celular , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Galectina 3/metabolismo , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA