Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Expert Rev Vaccines ; 22(1): 964-1007, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37571809

RESUMO

INTRODUCTION: Malaria, a devastating febrile illness caused by protozoan parasites, sickened 247,000,000 people in 2021 and killed 619,000, mostly children and pregnant women in sub-Saharan Africa. A highly effective vaccine is urgently needed, especially for Plasmodium falciparum (Pf), the deadliest human malaria parasite. AREAS COVERED: Sporozoites (SPZ), the parasite stage transmitted by Anopheles mosquitoes to humans, are the only vaccine immunogen achieving >90% efficacy against Pf infection. This review describes >30 clinical trials of PfSPZ vaccines in the U.S.A., Europe, Africa, and Asia, based on first-hand knowledge of the trials and PubMed searches of 'sporozoites,' 'malaria,' and 'vaccines.' EXPERT OPINION: First generation (radiation-attenuated) PfSPZ vaccines are safe, well tolerated, 80-100% efficacious against homologous controlled human malaria infection (CHMI) and provide 18-19 months protection without boosting in Africa. Second generation chemo-attenuated PfSPZ are more potent, 100% efficacious against stringent heterologous (variant strain) CHMI, but require a co-administered drug, raising safety concerns. Third generation, late liver stage-arresting, replication competent (LARC), genetically-attenuated PfSPZ are expected to be both safe and highly efficacious. Overall, PfSPZ vaccines meet safety, tolerability, and efficacy requirements for protecting pregnant women and travelers exposed to Pf in Africa, with licensure for these populations possible within 5 years. Protecting children and mass vaccination programs to block transmission and eliminate malaria are long-term objectives.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Gravidez , Criança , Animais , Humanos , Feminino , Esporozoítos , Ciência Translacional Biomédica , Vacinas Atenuadas , Malária/prevenção & controle , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Imunização
2.
BMJ Glob Health ; 8(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147016

RESUMO

BACKGROUND: Seasonal vaccination with the RTS,S/AS01E malaria vaccine given alongside seasonal malaria chemoprevention (SMC) substantially reduces malaria in young children. The WHO has recommended the use of RTS,S/AS01E, including seasonal vaccination, in areas with seasonal malaria transmission. This study aimed to identify potential strategies to deliver RTS,S/AS01E, and assess the considerations and recommendations for delivery of seasonal malaria vaccination in Mali, a country with highly seasonal malaria. METHODS: Potential delivery strategies for RTS,S/AS01E in areas with seasonal malaria were identified through a series of high level discussions with the RTS,S/AS01E plus SMC trial investigators, international and national immunisation and malaria experts, and through the development of a theory of change. These were explored through qualitative in-depth interviews with 108 participants, including national-level, regional-level and district-level malaria and immunisation programme managers, health workers, caregivers of children under 5 years of age, and community stakeholders. A national-level workshop was held to confirm the qualitative findings and work towards consensus on an appropriate strategy. RESULTS: Four delivery strategies were identified: age-based vaccination delivered via the Essential Programme on Immunisation (EPI); seasonal vaccination via EPI mass vaccination campaigns (MVCs); a combination of age-based priming vaccination doses delivered via the EPI clinics and seasonal booster doses delivered via MVCs; and a combination of age-based priming vaccination doses and seasonal booster doses, all delivered via the EPI clinics, which was the preferred strategy for delivery of RTS,S/AS01E in Mali identified during the national workshop. Participants recommended that supportive interventions, including communications and mobilisation, would be needed for this strategy to achieve required coverage. CONCLUSIONS: Four delivery strategies were identified for administration of RTS,S/AS01E alongside SMC in countries with seasonal malaria transmission. Components of these delivery strategies were defined as the vaccination schedule, and the delivery system(s) plus the supportive interventions needed for the strategies to be effective. Further implementation research and evaluation is needed to explore how, where, when and what effective coverage is achievable via these new strategies and their supportive interventions.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Criança , Humanos , Pré-Escolar , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/prevenção & controle , Estações do Ano , Malária/prevenção & controle , Vacinação
3.
Malar J ; 20(1): 128, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663488

RESUMO

BACKGROUND: Seasonal malaria chemoprevention (SMC) is a strategy for malaria control recommended by the World Health Organization (WHO) since 2012 for Sahelian countries. The Mali National Malaria Control Programme adopted a plan for pilot implementation and nationwide scale-up by 2016. Given that SMC is a relatively new approach, there is an urgent need to assess the costs and cost effectiveness of SMC when implemented through the routine health system to inform decisions on resource allocation. METHODS: Cost data were collected from pilot implementation of SMC in Kita district, which targeted 77,497 children aged 3-59 months. Starting in August 2014, SMC was delivered by fixed point distribution in villages with the first dose observed each month. Treatment consisted of sulfadoxine-pyrimethamine and amodiaquine once a month for four consecutive months, or rounds. Economic and financial costs were collected from the provider perspective using an ingredients approach. Effectiveness estimates were based upon a published mathematical transmission model calibrated to local epidemiology, rainfall patterns and scale-up of interventions. Incremental cost effectiveness ratios were calculated for the cost per malaria episode averted, cost per disability adjusted life years (DALYs) averted, and cost per death averted. RESULTS: The total economic cost of the intervention in the district of Kita was US $357,494. Drug costs and personnel costs accounted for 34% and 31%, respectively. Incentives (payment other than salary for efforts beyond routine activities) accounted for 25% of total implementation costs. Average financial and economic unit costs per child per round were US $0.73 and US $0.86, respectively; total annual financial and economic costs per child receiving SMC were US $2.92 and US $3.43, respectively. Accounting for coverage, the economic cost per child fully adherent (receiving all four rounds) was US $6.38 and US $4.69, if weighted highly adherent, (receiving 3 or 4 rounds of SMC). When costs were combined with modelled effects, the economic cost per malaria episode averted in children was US $4.26 (uncertainty bound 2.83-7.17), US $144 (135-153) per DALY averted and US $ 14,503 (13,604-15,402) per death averted. CONCLUSIONS: When implemented at fixed point distribution through the routine health system in Mali, SMC was highly cost-effective. As in previous SMC implementation studies, financial incentives were a large cost component.


Assuntos
Amodiaquina/uso terapêutico , Antimaláricos/uso terapêutico , Controle de Doenças Transmissíveis/economia , Análise Custo-Benefício/estatística & dados numéricos , Malária/prevenção & controle , Pirimetamina/uso terapêutico , Sulfadoxina/uso terapêutico , Quimioprevenção/economia , Pré-Escolar , Combinação de Medicamentos , Humanos , Lactente , Mali , Estações do Ano
4.
Malar J ; 16(1): 325, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28797263

RESUMO

BACKGROUND: Seasonal malaria chemoprevention (SMC) is a new strategy recommended by WHO in areas of highly seasonal transmission in March 2012. Although randomized controlled trials (RCTs) have shown SMC to be highly effective, evidence and experience from routine implementation of SMC are limited. METHODS: A non-randomized pragmatic trial with pre-post design was used, with one intervention district (Kita), where four rounds of SMC with sulfadoxine + amodiaquine (SP + AQ) took place in August-November 2014, and one comparison district (Bafoulabe). The primary aims were to evaluate SMC coverage and reductions in prevalence of malaria and anaemia when SMC is delivered through routine programmes using existing community health workers. Children aged 3-59 months from 15 selected localities per district, sampled with probability proportional to size, were surveyed and blood samples collected for malaria blood smears, haemoglobin (Hb) measurement, and molecular markers of drug resistance in two cross-sectional surveys, one before SMC (July 2014) and one after SMC (December 2014). Difference-in-differences regression models were used to assess and compare changes in malaria and anaemia in the intervention and comparison districts. Adherence and tolerability of SMC were assessed by cross-sectional surveys 4-7 days after each SMC round. Coverage of SMC was assessed in the post-SMC survey. RESULTS: During round 1, 84% of targeted children received at least the first SMC dose, but coverage declined to 67% by round 4. Across the four treatment rounds, 54% of children received four complete SMC courses. Prevalence of parasitaemia was similar in intervention and comparison districts prior to SMC (23.4 vs 29.5%, p = 0.34) as was the prevalence of malaria illness (2.4 vs 1.9%, p = 0.75). After SMC, parasitaemia prevalence fell to 18% in the intervention district and increased to 46% in the comparison district [difference-in-differences (DD) OR = 0.35; 95% CI 0.20-0.60]. Prevalence of malaria illness fell to a greater degree in the intervention district versus the comparison district (DD OR = 0.20; 95% CI 0.04-0.94) and the same for moderate anaemia (Hb < 8 g/dL) (DD OR = 0.26, 95% CI 0.11-0.65). The frequency of the quintuple mutation (dhfr N51I, C59R and S108N + dhps A437G and K540E) remained low (5%) before and after intervention in both districts. CONCLUSIONS: Routine implementation of SMC in Mali substantially reduced malaria and anaemia, with reductions of similar magnitude to those seen in previous RCTs. Improving coverage could further strengthen SMC impact. Trial registration clinical trial registration number NCT02894294.


Assuntos
Antimaláricos/uso terapêutico , Quimioprevenção/estatística & dados numéricos , Quimioprevenção/normas , Malária/epidemiologia , Malária/prevenção & controle , Amodiaquina/uso terapêutico , Anemia/epidemiologia , Criança , Pré-Escolar , Estudos Transversais , Combinação de Medicamentos , Feminino , Humanos , Lactente , Malária/tratamento farmacológico , Masculino , Mali/epidemiologia , Prevalência , Estações do Ano , Sulfadoxina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA