Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 3760, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111960

RESUMO

Epilepsy is a widespread neurological disease characterized by abnormal neuronal activity resulting in recurrent seizures. There is mounting evidence that a circadian system disruption, involving clock genes and their downstream transcriptional regulators, is associated with epilepsy. In this study, we characterized the hippocampal expression of clock genes and PAR bZIP transcription factors (TFs) in a mouse model of temporal lobe epilepsy induced by intrahippocampal injection of kainic acid (KA). The expression of PAR bZIP TFs was significantly altered following KA injection as well as in other rodent models of acquired epilepsy. Although the PAR bZIP TFs are regulated by proinflammatory cytokines in peripheral tissues, we discovered that the regulation of their expression is inflammation-independent in hippocampal tissue and rather mediated by clock genes and hyperexcitability. Furthermore, we report that hepatic leukemia factor (Hlf), a member of PAR bZIP TFs family, is invariably downregulated in animal models of acquired epilepsy, regulates neuronal activity in vitro and its overexpression in dentate gyrus neurons in vivo leads to altered expression of genes associated with seizures and epilepsy. Overall, our study provides further evidence of PAR bZIP TFs involvement in epileptogenesis and points to Hlf as the key player.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Giro Denteado/metabolismo , Epilepsia/metabolismo , Regulação da Expressão Gênica , Animais , Giro Denteado/patologia , Modelos Animais de Doenças , Epilepsia/induzido quimicamente , Ácido Caínico/efeitos adversos , Ácido Caínico/farmacologia , Masculino , Camundongos
2.
PLoS Pathog ; 14(3): e1006908, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29505618

RESUMO

Amino-acid coevolution can be referred to mutational compensatory patterns preserving the function of a protein. Viral envelope glycoproteins, which mediate entry of enveloped viruses into their host cells, are shaped by coevolution signals that confer to viruses the plasticity to evade neutralizing antibodies without altering viral entry mechanisms. The functions and structures of the two envelope glycoproteins of the Hepatitis C Virus (HCV), E1 and E2, are poorly described. Especially, how these two proteins mediate the HCV fusion process between the viral and the cell membrane remains elusive. Here, as a proof of concept, we aimed to take advantage of an original coevolution method recently developed to shed light on the HCV fusion mechanism. When first applied to the well-characterized Dengue Virus (DENV) envelope glycoproteins, coevolution analysis was able to predict important structural features and rearrangements of these viral protein complexes. When applied to HCV E1E2, computational coevolution analysis predicted that E1 and E2 refold interdependently during fusion through rearrangements of the E2 Back Layer (BL). Consistently, a soluble BL-derived polypeptide inhibited HCV infection of hepatoma cell lines, primary human hepatocytes and humanized liver mice. We showed that this polypeptide specifically inhibited HCV fusogenic rearrangements, hence supporting the critical role of this domain during HCV fusion. By combining coevolution analysis and in vitro assays, we also uncovered functionally-significant coevolving signals between E1 and E2 BL/Stem regions that govern HCV fusion, demonstrating the accuracy of our coevolution predictions. Altogether, our work shed light on important structural features of the HCV fusion mechanism and contributes to advance our functional understanding of this process. This study also provides an important proof of concept that coevolution can be employed to explore viral protein mediated-processes, and can guide the development of innovative translational strategies against challenging human-tropic viruses.


Assuntos
Evolução Molecular , Hepacivirus/fisiologia , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Hepatite C/metabolismo , Hepatite C/patologia , Hepatite C/virologia , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Células Tumorais Cultivadas , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Replicação Viral
3.
BMC Bioinformatics ; 13: 194, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23216858

RESUMO

BACKGROUND: Searching for similarities in a set of biological data is intrinsically difficult due to possible data points that should not be clustered, or that should group within several clusters. Under these hypotheses, hierarchical agglomerative clustering is not appropriate. Moreover, if the dataset is not known enough, like often is the case, supervised classification is not appropriate either. RESULTS: CLAG (for CLusters AGgregation) is an unsupervised non hierarchical clustering algorithm designed to cluster a large variety of biological data and to provide a clustered matrix and numerical values indicating cluster strength. CLAG clusterizes correlation matrices for residues in protein families, gene-expression and miRNA data related to various cancer types, sets of species described by multidimensional vectors of characters, binary matrices. It does not ask to all data points to cluster and it converges yielding the same result at each run. Its simplicity and speed allows it to run on reasonably large datasets. CONCLUSIONS: CLAG can be used to investigate the cluster structure present in biological datasets and to identify its underlying graph. It showed to be more informative and accurate than several known clustering methods, as hierarchical agglomerative clustering, k-means, fuzzy c-means, model-based clustering, affinity propagation clustering, and not to suffer of the convergence problem proper to this latter.


Assuntos
Algoritmos , Expressão Gênica , Neoplasias/genética , Neoplasias Encefálicas/genética , Neoplasias da Mama/genética , Análise por Conglomerados , Feminino , Humanos , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos
4.
PLoS One ; 7(11): e48124, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23139761

RESUMO

Small protein fragments, and not just residues, can be used as basic building blocks to reconstruct networks of coevolved amino acids in proteins. Fragments often enter in physical contact one with the other and play a major biological role in the protein. The nature of these interactions might be multiple and spans beyond binding specificity, allosteric regulation and folding constraints. Indeed, coevolving fragments are indicators of important information explaining folding intermediates, peptide assembly, key mutations with known roles in genetic diseases, distinguished subfamily-dependent motifs and differentiated evolutionary pressures on protein regions. Coevolution analysis detects networks of fragments interaction and highlights a high order organization of fragments demonstrating the importance of studying at a deeper level this structure. We demonstrate that it can be applied to protein families that are highly conserved or represented by few sequences, enlarging in this manner, the class of proteins where coevolution analysis can be performed and making large-scale coevolution studies a feasible goal.


Assuntos
Evolução Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Mapas de Interação de Proteínas , Proteínas/química , Proteínas/metabolismo , Adenosina Trifosfatases/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Aminoácidos/química , Peptídeos beta-Amiloides/química , Sequência Conservada , Modelos Moleculares , Dados de Sequência Molecular , Estabilidade Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA