Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(29): e2400883121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38980908

RESUMO

Gasdermin D (GSDMD)-mediated pyroptotic cell death drives inflammatory cytokine release and downstream immune responses upon inflammasome activation, which play important roles in host defense and inflammatory disorders. Upon activation by proteases, the GSDMD N-terminal domain (NTD) undergoes oligomerization and membrane translocation in the presence of lipids to assemble pores. Despite intensive studies, the molecular events underlying the transition of GSDMD from an autoinhibited soluble form to an oligomeric pore form inserted into the membrane remain incompletely understood. Previous work characterized S-palmitoylation for gasdermins from bacteria, fungi, invertebrates, as well as mammalian gasdermin E (GSDME). Here, we report that a conserved residue Cys191 in human GSDMD was S-palmitoylated, which promoted GSDMD-mediated pyroptosis and cytokine release. Mutation of Cys191 or treatment with palmitoyltransferase inhibitors cyano-myracrylamide (CMA) or 2-bromopalmitate (2BP) suppressed GSDMD palmitoylation, its localization to the membrane and dampened pyroptosis or IL-1ß secretion. Furthermore, Gsdmd-dependent inflammatory responses were alleviated by inhibition of palmitoylation in vivo. By contrast, coexpression of GSDMD with palmitoyltransferases enhanced pyroptotic cell death, while introduction of exogenous palmitoylation sequences fully restored pyroptotic activities to the C191A mutant, suggesting that palmitoylation-mediated membrane localization may be distinct from other molecular events such as GSDMD conformational change during pore assembly. Collectively, our study suggests that S-palmitoylation may be a shared regulatory mechanism for GSDMD and other gasdermins, which points to potential avenues for therapeutically targeting S-palmitoylation of gasdermins in inflammatory disorders.


Assuntos
Cisteína , Peptídeos e Proteínas de Sinalização Intracelular , Lipoilação , Proteínas de Ligação a Fosfato , Piroptose , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cisteína/metabolismo , Animais , Camundongos , Citocinas/metabolismo , Células HEK293 , Inflamassomos/metabolismo , Gasderminas
2.
Nat Rev Mol Cell Biol ; 25(6): 488-509, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38355760

RESUMO

Over the past two decades, protein S-acylation (often referred to as S-palmitoylation) has emerged as an important regulator of vital signalling pathways. S-Acylation is a reversible post-translational modification that involves the attachment of a fatty acid to a protein. Maintenance of the equilibrium between protein S-acylation and deacylation has demonstrated profound effects on various cellular processes, including innate immunity, inflammation, glucose metabolism and fat metabolism, as well as on brain and heart function. This Review provides an overview of current understanding of S-acylation and deacylation enzymes, their spatiotemporal regulation by sophisticated multilayered mechanisms, and their influence on protein function, cellular processes and physiological pathways. Furthermore, we examine how disruptions in protein S-acylation are associated with a broad spectrum of diseases from cancer to autoinflammatory disorders and neurological conditions.


Assuntos
Processamento de Proteína Pós-Traducional , Humanos , Animais , Acilação , Transdução de Sinais , Lipoilação , Proteínas/metabolismo
3.
J Neurosci ; 43(43): 7084-7100, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37669863

RESUMO

The RNA modification N6-methyladenosine (m6A) regulates the interaction between RNA and various RNA binding proteins within the nucleus and other subcellular compartments and has recently been shown to be involved in experience-dependent plasticity, learning, and memory. Using m6A RNA-sequencing, we have discovered a distinct population of learning-related m6A- modified RNAs at the synapse, which includes the long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (Malat1). RNA immunoprecipitation and mass spectrometry revealed 12 new synapse-specific learning-induced m6A readers in the mPFC of male C57/BL6 mice, with m6A-modified Malat1 binding to a subset of these, including CYFIP2 and DPYSL2. In addition, a cell type- and synapse-specific, and state-dependent, reduction of m6A on Malat1 impairs fear-extinction memory; an effect that likely occurs through a disruption in the interaction between Malat1 and DPYSL2 and an associated decrease in dendritic spine formation. These findings highlight the critical role of m6A in regulating the functional state of RNA during the consolidation of fear-extinction memory, and expand the repertoire of experience-dependent m6A readers in the synaptic compartment.SIGNIFICANCE STATEMENT We have discovered that learning-induced m6A-modified RNA (including the long noncoding RNA, Malat1) accumulates in the synaptic compartment. We have identified several new m6A readers that are associated with fear extinction learning and demonstrate a causal relationship between m6A-modified Malat1 and the formation of fear-extinction memory. These findings highlight the role of m6A in regulating the functional state of an RNA during memory formation and expand the repertoire of experience-dependent m6A readers in the synaptic compartment.


Assuntos
Medo , RNA Longo não Codificante , Animais , Masculino , Camundongos , Extinção Psicológica , Medo/fisiologia , Aprendizagem/fisiologia , RNA Longo não Codificante/metabolismo , Sinapses/metabolismo
4.
Cell Rep ; 42(9): 113135, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37715953

RESUMO

Extracellular signal-regulated kinases (ERK1/2) are key effector proteins of the mitogen-activated protein kinase pathway, choreographing essential processes of cellular physiology. Here, we discover that ERK1/2 are subject to S-acylation, a reversible lipid modification of cysteine residues, at C271/C254. The levels of ERK1/2 S-acylation are modulated by epidermal growth factor (EGF) signaling, mirroring its phosphorylation dynamics, and acylation-deficient ERK2 displays altered phosphorylation patterns. We show that ERK1/2 S-acylation is mediated by "writer" protein acyl transferases (PATs) and "eraser" acyl protein thioesterases (APTs) and that chemical inhibition of either lipid addition or removal alters ERK1/2's EGF-triggered transcriptional program. Finally, in a mouse model of metabolic syndrome, we find that ERK1/2 lipidation levels correlate with alterations in ERK1/2 lipidation writer/eraser expression, solidifying a link between ERK1/2 activity, ERK1/2 lipidation, and organismal health. This study describes how lipidation regulates ERK1/2 and offers insight into the role of dynamic S-acylation in cell signaling more broadly.


Assuntos
Sistema de Sinalização das MAP Quinases , Animais , Camundongos , Acilação , Fator de Crescimento Epidérmico/farmacologia , MAP Quinases Reguladas por Sinal Extracelular , Lipídeos , Fosforilação
5.
Pharmaceuticals (Basel) ; 16(5)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37242495

RESUMO

The approval of different cytokines as anti-neoplastic agents has been challenged by dose-limiting toxicities. Although reducing dose levels affords improved tolerability, efficacy is precluded at these suboptimal doses. Strategies combining cytokines with oncolytic viruses have proven to elicit potent survival benefits in vivo, despite promoting rapid clearance of the oncolytic virus itself. Herein, we developed an inducible expression system based on a Split-T7 RNA polymerase for oncolytic poxviruses to regulate the spatial and temporal expression of a beneficial transgene. This expression system utilizes approved anti-neoplastic rapamycin analogues for transgene induction. This treatment regimen thus offers a triple anti-tumour effect through the oncolytic virus, the induced transgene, and the pharmacologic inducer itself. More specifically, we designed our therapeutic transgene by fusing a tumour-targeting chlorotoxin (CLTX) peptide to interleukin-12 (IL-12), and demonstrated that the constructs were functional and cancer-selective. We next encoded this construct into the oncolytic vaccinia virus strain Copenhagen (VV-iIL-12mCLTX), and were able to demonstrate significantly improved survival in multiple syngeneic murine tumour models through both localized and systemic virus administration, in combination with rapalogs. In summary, our findings demonstrate that rapalog-inducible genetic switches based on Split-T7 polymerase allow for regulation of the oncolytic virus-driven production of tumour-localized IL-12 for improved anti-cancer immunotherapy.

6.
Nat Commun ; 14(1): 3035, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37236967

RESUMO

The large coding potential of vaccinia virus (VV) vectors is a defining feature. However, limited regulatory switches are available to control viral replication as well as timing and dosing of transgene expression in order to facilitate safe and efficacious payload delivery. Herein, we adapt drug-controlled gene switches to enable control of virally encoded transgene expression, including systems controlled by the FDA-approved rapamycin and doxycycline. Using ribosome profiling to characterize viral promoter strength, we rationally design fusions of the operator element of different drug-inducible systems with VV promoters to produce synthetic promoters yielding robust inducible expression with undetectable baseline levels. We also generate chimeric synthetic promoters facilitating additional regulatory layers for VV-encoded synthetic transgene networks. The switches are applied to enable inducible expression of fusogenic proteins, dose-controlled delivery of toxic cytokines, and chemical regulation of VV replication. This toolbox enables the precise modulation of transgene circuitry in VV-vectored oncolytic virus design.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Vetores Genéticos/genética , Vaccinia virus/genética , Vírus Oncolíticos/genética , Regiões Promotoras Genéticas/genética
7.
Biochemistry ; 62(11): 1619-1630, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37192192

RESUMO

The structurally conserved B-cell lymphoma 2 (Bcl-2) family of protein function to promote or inhibit apoptosis through an exceedingly complex web of specific, intrafamilial protein-protein interactions. The critical role of these proteins in lymphomas and other cancers has motivated a widespread interest in understanding the molecular mechanisms that drive specificity in Bcl-2 family interactions. However, the high degree of structural similarity among Bcl-2 homologues has made it difficult to rationalize the highly specific (and often divergent) binding behavior exhibited by these proteins using conventional structural arguments. In this work, we use time-resolved hydrogen deuterium exchange mass spectrometry to explore shifts in conformational dynamics associated with binding partner engagement in the Bcl-2 family proteins Bcl-2 and Mcl-1. Using this approach combined with homology modeling, we reveal that Mcl-1 binding is driven by a large-scale shift in conformational dynamics, while Bcl-2 complexation occurs primarily through a classical charge compensation mechanism. This work has implications for understanding the evolution of internally regulated biological systems composed of structurally similar proteins and for the development of drugs targeting Bcl-2 family proteins for promotion of apoptosis in cancer.


Assuntos
Proteínas Reguladoras de Apoptose , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteína de Sequência 1 de Leucemia de Células Mieloides/química , Ligação Proteica , Apoptose
8.
Pathogens ; 11(11)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36364996

RESUMO

Dynamic post-translational modifications allow the rapid, specific, and tunable regulation of protein functions in eukaryotic cells. S-acylation is the only reversible lipid modification of proteins, in which a fatty acid, usually palmitate, is covalently attached to a cysteine residue of a protein by a zDHHC palmitoyl acyltransferase enzyme. Depalmitoylation is required for acylation homeostasis and is catalyzed by an enzyme from the alpha/beta hydrolase family of proteins usually acyl-protein thioesterase (APT1). The enzyme responsible for depalmitoylation in Trypanosoma brucei parasites is currently unknown. We demonstrate depalmitoylation activity in live bloodstream and procyclic form trypanosomes sensitive to dose-dependent inhibition with the depalmitoylation inhibitor, palmostatin B. We identified a homologue of human APT1 in Trypanosoma brucei which we named TbAPT-like (TbAPT-L). Epitope-tagging of TbAPT-L at N- and C- termini indicated a cytoplasmic localization. Knockdown or over-expression of TbAPT-L in bloodstream forms led to robust changes in TbAPT-L mRNA and protein expression but had no effect on parasite growth in vitro, or cellular depalmitoylation activity. Esterase activity in cell lysates was also unchanged when TbAPT-L was modulated. Unexpectedly, recombinant TbAPT-L possesses esterase activity with specificity for short- and medium-chain fatty acid substrates, leading to the conclusion, TbAPT-L is a lipase, not a depalmitoylase.

9.
ACS Med Chem Lett ; 13(10): 1648-1654, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36262404

RESUMO

Protein S-acylation is a dynamic and reversible lipid post-translational modification that can affect the activity, stability, localization, and interactions of target proteins. Lipid modification occurs on cysteine residues via a thioester bond and in humans is mediated by 23 Asp-His-His-Cys domain-containing protein acyltransferases (DHHC-PATs). The DHHC-PATs have well-known roles in physiology and disease, but much remains to be discovered about their biological function and therapeutic potential. We recently developed cyanomyracrylamide (CMA), an acrylamide-based DHHC inhibitor with key improvements over existing inhibitors. Here we conduct a structure-activity relationship (SAR) study of CMA and its acrylamide derivatives against zDHHC20, the most structurally characterized member of the human DHHC family, and validate the results against the homologous zDHHC2. This SAR maps out the limitations and potential of the acrylamide scaffold, underscoring the need for a bivalent inhibitor and identifying along the way three molecules with activity on par with CMA but with an improved logP.

10.
ACS Chem Biol ; 17(8): 2018-2023, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35816339

RESUMO

As the "writer" enzymes of protein S-acylation, a dynamic and functionally significant post-translational modification (PTM), DHHC family proteins have emerged in the past decade as both key modulators of cellular homeostasis and as drivers of neoplastic, autoimmune, metabolic, and neurological pathologies. Currently, biological and clinical discovery is hampered by the limitations of existing DHHC family inhibitors, which possess poor physicochemical properties and off-target profiles. However, progress in identifying new inhibitory scaffolds has been meager, in part due to a lack of robust in vitro assays suitable for high-throughput screening (HTS). Here, we report the development of palmitoyl transferase probes (PTPs), a novel family of turn-on pro-fluorescent molecules that mimic the palmitoyl-CoA substrate of DHHC proteins. We use the PTPs to develop and validate an assay with an excellent Z'-factor for HTS. We then perform a pilot screen of 1687 acrylamide-based molecules against zDHHC20, establishing the PTP-based HTS assay as a platform for the discovery of improved DHHC family inhibitors.


Assuntos
Aciltransferases , Ensaios de Triagem em Larga Escala , Aciltransferases/metabolismo , Processamento de Proteína Pós-Traducional
11.
Sci Adv ; 8(15): eabj8633, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427157

RESUMO

Genetic CLN5 variants are associated with childhood neurodegeneration and Alzheimer's disease; however, the molecular function of ceroid lipofuscinosis neuronal protein 5 (Cln5) is unknown. We solved the Cln5 crystal structure and identified a region homologous to the catalytic domain of members of the N1pC/P60 superfamily of papain-like enzymes. However, we observed no protease activity for Cln5; and instead, we discovered that Cln5 and structurally related PPPDE1 and PPPDE2 have efficient cysteine palmitoyl thioesterase (S-depalmitoylation) activity using fluorescent substrates. Mutational analysis revealed that the predicted catalytic residues histidine-166 and cysteine-280 are critical for Cln5 thioesterase activity, uncovering a new cysteine-based catalytic mechanism for S-depalmitoylation enzymes. Last, we found that Cln5-deficient neuronal progenitor cells showed reduced thioesterase activity, confirming live cell function of Cln5 in setting S-depalmitoylation levels. Our results provide new insight into the function of Cln5, emphasize the importance of S-depalmitoylation in neuronal homeostasis, and disclose a new, unexpected enzymatic function for the N1pC/P60 superfamily of proteins.


Assuntos
Cisteína , Lipofuscinoses Ceroides Neuronais , Criança , Humanos , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Proteínas de Membrana/metabolismo , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo
12.
Sci Adv ; 8(8): eabi6110, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35050692

RESUMO

The spread of SARS-CoV-2 and ongoing COVID-19 pandemic underscores the need for new treatments. Here we report that cannabidiol (CBD) inhibits infection of SARS-CoV-2 in cells and mice. CBD and its metabolite 7-OH-CBD, but not THC or other congeneric cannabinoids tested, potently block SARS-CoV-2 replication in lung epithelial cells. CBD acts after viral entry, inhibiting viral gene expression and reversing many effects of SARS-CoV-2 on host gene transcription. CBD inhibits SARS-CoV-2 replication in part by up-regulating the host IRE1α RNase endoplasmic reticulum (ER) stress response and interferon signaling pathways. In matched groups of human patients from the National COVID Cohort Collaborative, CBD (100 mg/ml oral solution per medical records) had a significant negative association with positive SARS-CoV-2 tests. This study highlights CBD as a potential preventative agent for early-stage SARS-CoV-2 infection and merits future clinical trials. We caution against use of non-medical formulations including edibles, inhalants or topicals as a preventative or treatment therapy at the present time.


Assuntos
Antivirais/farmacologia , Canabidiol/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Células A549 , Animais , Antivirais/química , COVID-19/virologia , Canabidiol/química , Canabidiol/metabolismo , Chlorocebus aethiops , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/genética , Endorribonucleases/metabolismo , Células Epiteliais/virologia , Feminino , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Interferons/metabolismo , Camundongos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , SARS-CoV-2/fisiologia , Células Vero , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
13.
Curr Opin Chem Biol ; 65: 118-125, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34467875

RESUMO

Protein S-acylation is a prevalent post-translational protein lipidation that is dynamically regulated by 'writer' protein S-acyltransferases and 'eraser' acylprotein thioesterases. The protein S-acyltransferases comprise 23 aspartate-histidine-histidine-cysteine (DHHC)-containing proteins, which transfer fatty acid acyl groups from acyl-coenzyme A onto protein substrates. DHHC proteins are increasingly recognized as critical regulators of S-acylation-mediated cellular processes and pathology. As our understanding of the importance and breadth of DHHC-mediated biology and pathology expands, so too does the need for chemical inhibitors of this class of proteins. In this review, we discuss the challenges and progress in DHHC inhibitor development, focusing on 2-bromopalmitate, the most commonly used inhibitor in the field, and N-cyanomethyl-N-myracrylamide, a new broad-spectrum DHHC inhibitor. We believe that current and ongoing advances in structure elucidation, mechanistic interrogation, and novel inhibitor design around DHHC proteins will spark innovative strategies to modulate these critical proteins in living systems.


Assuntos
Aciltransferases , Lipoilação , Acilação , Aciltransferases/metabolismo , Cisteína/metabolismo , Processamento de Proteína Pós-Traducional
14.
Bioorg Med Chem ; 47: 116393, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34509862

RESUMO

The continued toll of COVID-19 has halted the smooth functioning of civilization on a global scale. With a limited understanding of all the essential components of viral machinery and the lack of structural information of this new virus, initial drug discovery efforts had limited success. The availability of high-resolution crystal structures of functionally essential SARS-CoV-2 proteins, including 3CLpro, supports the development of target-specific therapeutics. 3CLpro, the main protease responsible for the processing of viral polypeptide, plays a vital role in SARS-CoV-2 viral replication and translation and is an important target in other coronaviruses. Additionally, 3CLpro is the target of repurposed drugs, such as lopinavir and ritonavir. In this study, target proteins were retrieved from the protein data bank (PDB IDs: 6 M03, 6LU7, 2GZ7, 6 W63, 6SQS, 6YB7, and 6YVF) representing different open states of the main protease to accommodate macromolecular substrate. A hydroxyethylamine (HEA) library was constructed from harvested chemical structures from all the series being used in our laboratories for screening against malaria and Leishmania parasites. The database consisted of ∼1000 structure entries, of which 70% were new to ChemSpider at the time of screening. This in-house library was subjected to high throughput virtual screening (HTVS), followed by standard precision (SP) and then extra precision (XP) docking (Schrodinger LLC 2021). The ligand strain and complex energy of top hits were calculated by Molecular Mechanics Generalized Born Surface Area (MM/GBSA) method. Promising hit compounds (n = 40) specifically binding to 3CLpro with high energy and average MM/GBSA scores were then subjected to (100-ns) MD simulations. Using this sequential selection followed by an in-silico validation approach, we found a promising HEA-based compound (N,N'-((3S,3'S)-piperazine-1,4-diylbis(3-hydroxy-1-phenylbutane-4,2-diyl))bis(2-(5-methyl-1,3-dioxoisoindolin-2-yl)-3-phenylpropanamide)), which showed high in vitro antiviral activity against SARS-CoV-2. Further to reduce the size of the otherwise larger ligand, a pharmacophore-based predicted library of âˆ¼42 derivatives was constructed, which were added to the previous compound library and rescreened virtually. Out of several hits from the predicted library, two compounds were synthesized, tested against SARS-CoV-2 culture, and found to have markedly improved antiviral activity.


Assuntos
Antivirais/química , Proteases 3C de Coronavírus/antagonistas & inibidores , Etilaminas/química , Inibidores de Proteases/química , SARS-CoV-2/enzimologia , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Sítios de Ligação , COVID-19/patologia , COVID-19/virologia , Domínio Catalítico , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Proteases 3C de Coronavírus/metabolismo , Etilaminas/metabolismo , Etilaminas/farmacologia , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , SARS-CoV-2/isolamento & purificação , Termodinâmica , Células Vero
15.
Science ; 373(6557): 931-936, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285133

RESUMO

There is an urgent need for antiviral agents that treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We screened a library of 1900 clinically safe drugs against OC43, a human beta coronavirus that causes the common cold, and evaluated the top hits against SARS-CoV-2. Twenty drugs significantly inhibited replication of both viruses in cultured human cells. Eight of these drugs inhibited the activity of the SARS-CoV-2 main protease, 3CLpro, with the most potent being masitinib, an orally bioavailable tyrosine kinase inhibitor. X-ray crystallography and biochemistry show that masitinib acts as a competitive inhibitor of 3CLpro. Mice infected with SARS-CoV-2 and then treated with masitinib showed >200-fold reduction in viral titers in the lungs and nose, as well as reduced lung inflammation. Masitinib was also effective in vitro against all tested variants of concern (B.1.1.7, B.1.351, and P.1).


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Coronavirus Humano OC43/efeitos dos fármacos , Inibidores de Cisteína Proteinase/farmacologia , SARS-CoV-2/efeitos dos fármacos , Tiazóis/farmacologia , Células A549 , Animais , Antivirais/química , Antivirais/metabolismo , Antivirais/uso terapêutico , Benzamidas , COVID-19/virologia , Domínio Catalítico , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Coronavirus Humano OC43/fisiologia , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/metabolismo , Células HEK293 , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos Transgênicos , Testes de Sensibilidade Microbiana , Piperidinas , Piridinas , SARS-CoV-2/enzimologia , SARS-CoV-2/fisiologia , Tiazóis/química , Tiazóis/metabolismo , Tiazóis/uso terapêutico , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
16.
ACS Chem Biol ; 16(8): 1546-1556, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34309372

RESUMO

Protein S-acylation is a dynamic lipid post-translational modification that can modulate the localization and activity of target proteins. In humans, the installation of the lipid onto target proteins is catalyzed by a family of 23 Asp-His-His-Cys domain-containing protein acyltransferases (DHHC-PATs). DHHCs are increasingly recognized as critical players in cellular signaling events and in human disease. However, progress elucidating the functions and mechanisms of DHHC "writers" has been hampered by a lack of chemical tools to perturb their activity in live cells. Herein, we report the synthesis and characterization of cyano-myracrylamide (CMA), a broad-spectrum DHHC family inhibitor with similar potency to 2-bromopalmitate (2BP), the most commonly used DHHC inhibitor in the field. Possessing an acrylamide warhead instead of 2BP's α-halo fatty acid, CMA inhibits DHHC family proteins in cellulo while demonstrating decreased toxicity and avoiding inhibition of the S-acylation eraser enzymes, two of the major weaknesses of 2BP. Our studies show that CMA engages with DHHC family proteins in cells, inhibits protein S-acylation, and disrupts DHHC-regulated cellular events. CMA represents an improved chemical scaffold for untangling the complexities of DHHC-mediated cell signaling by protein S-acylation.


Assuntos
Acrilamidas/farmacologia , Aciltransferases/antagonistas & inibidores , Antígenos CD36/metabolismo , Inibidores Enzimáticos/farmacologia , Acrilamidas/síntese química , Acrilamidas/toxicidade , Acilação/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/toxicidade , Receptores ErbB/metabolismo , Humanos , Lipoilação/efeitos dos fármacos , Camundongos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos
17.
Elife ; 102021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34061027

RESUMO

The roles of chance, contingency, and necessity in evolution are unresolved because they have never been assessed in a single system or on timescales relevant to historical evolution. We combined ancestral protein reconstruction and a new continuous evolution technology to mutate and select proteins in the B-cell lymphoma-2 (BCL-2) family to acquire protein-protein interaction specificities that occurred during animal evolution. By replicating evolutionary trajectories from multiple ancestral proteins, we found that contingency generated over long historical timescales steadily erased necessity and overwhelmed chance as the primary cause of acquired sequence variation; trajectories launched from phylogenetically distant proteins yielded virtually no common mutations, even under strong and identical selection pressures. Chance arose because many sets of mutations could alter specificity at any timepoint; contingency arose because historical substitutions changed these sets. Our results suggest that patterns of variation in BCL-2 sequences - and likely other proteins, too - are idiosyncratic products of a particular and unpredictable course of historical events.


One of the most fundamental and unresolved questions in evolutionary biology is whether the outcomes of evolution are predictable. Is the diversity of life we see today the expected result of organisms adapting to their environment throughout history (also known as natural selection) or the product of random chance? Or did chance events early in history shape the paths that evolution could take next, determining the biological forms that emerged under natural selection much later? These questions are hard to study because evolution happened only once, long ago. To overcome this barrier, Xie, Pu, Metzger et al. developed an experimental approach that can evolve reconstructed ancestral proteins that existed deep in the past. Using this method, it is possible to replay evolution multiple times, from various historical starting points, under conditions similar to those that existed long ago. The end products of the evolutionary trajectories can then be compared to determine how predictable evolution actually is. Xie, Pu, Metzger et al. studied proteins belonging to the BCL-2 family, which originated some 800 million years ago. These proteins have diversified greatly over time in both their genetic sequences and their ability to bind to specific partner proteins called co-regulators. Xie, Pu, Metzger et al. synthesized BCL-2 proteins that existed at various times in the past. Each ancestral protein was then allowed to evolve repeatedly under natural selection to acquire the same co-regulator binding functions that evolved during history. At the end of each evolutionary trajectory, the genetic sequence of the resulting BCL-2 proteins was recorded. This revealed that the outcomes of evolution were almost completely unpredictable: trajectories initiated from the same ancestral protein produced proteins with very different sequences, and proteins launched from different ancestral starting points were even more dissimilar. Further experiments identified the mutations in each trajectory that caused changes in coregulator binding. When these mutations were introduced into other ancestral proteins, they did not yield the same change in function. This suggests that early chance events influenced each protein's evolution in an unpredictable way by opening and closing the paths available to it in the future. This research expands our understanding of evolution on a molecular level whilst providing a new experimental approach for studying evolutionary drivers in more detail. The results suggest that BCL-2 proteins, in all their various forms, are unique products of a particular, unpredictable course of history set in motion by ancient chance events.


Assuntos
Evolução Molecular , Mutação , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Animais , Epistasia Genética , Duplicação Gênica , Humanos , Modelos Moleculares , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Filogenia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fatores de Tempo
18.
Nat Commun ; 12(1): 743, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531496

RESUMO

The pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to expand. Papain-like protease (PLpro) is one of two SARS-CoV-2 proteases potentially targetable with antivirals. PLpro is an attractive target because it plays an essential role in cleavage and maturation of viral polyproteins, assembly of the replicase-transcriptase complex, and disruption of host responses. We report a substantive body of structural, biochemical, and virus replication studies that identify several inhibitors of the SARS-CoV-2 enzyme. We determined the high resolution structure of wild-type PLpro, the active site C111S mutant, and their complexes with inhibitors. This collection of structures details inhibitors recognition and interactions providing fundamental molecular and mechanistic insight into PLpro. All compounds inhibit the peptidase activity of PLpro in vitro, some block SARS-CoV-2 replication in cell culture assays. These findings will accelerate structure-based drug design efforts targeting PLpro to identify high-affinity inhibitors of clinical value.


Assuntos
Papaína/metabolismo , Peptídeo Hidrolases/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Antivirais/farmacologia , Humanos , Mutação , Poliproteínas/metabolismo , Especificidade por Substrato , Replicação Viral/efeitos dos fármacos
19.
bioRxiv ; 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32908976

RESUMO

There is an urgent need for anti-viral agents that treat SARS-CoV-2 infection. The shortest path to clinical use is repurposing of drugs that have an established safety profile in humans. Here, we first screened a library of 1,900 clinically safe drugs for inhibiting replication of OC43, a human beta-coronavirus that causes the common-cold and is a relative of SARS-CoV-2, and identified 108 effective drugs. We further evaluated the top 26 hits and determined their ability to inhibit SARS-CoV-2, as well as other pathogenic RNA viruses. 20 of the 26 drugs significantly inhibited SARS-CoV-2 replication in human lung cells (A549 epithelial cell line), with EC50 values ranging from 0.1 to 8 micromolar. We investigated the mechanism of action for these and found that masitinib, a drug originally developed as a tyrosine-kinase inhibitor for cancer treatment, strongly inhibited the activity of the SARS-CoV-2 main protease 3CLpro. X-ray crystallography revealed that masitinib directly binds to the active site of 3CLpro, thereby blocking its enzymatic activity. Mastinib also inhibited the related viral protease of picornaviruses and blocked picornaviruses replication. Thus, our results show that masitinib has broad anti-viral activity against two distinct beta-coronaviruses and multiple picornaviruses that cause human disease and is a strong candidate for clinical trials to treat SARS-CoV-2 infection.

20.
Acc Chem Res ; 52(11): 3029-3038, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31577124

RESUMO

While lipids were first appreciated as a critical hydrophobic barrier, our understanding of their roles at the cellular and organismal levels continues to grow. Not only are they important independent operators, providing a platform for both static and dynamic organization and communication within the cell, they also exert significant effects via the chemical modification of proteins. Addition of a lipid post-translational modification (PTM) alters protein hydrophobicity and behavior, with distinct consequences for subcellular trafficking, localization, intra- and intermolecular interactions, and stability. One of the most abundant and widespread protein lipidation events is S-acylation, installation of a long-chain lipid to the thiol of a cysteine side chain through a thioester linkage. S-Acylation is often referred to as S-palmitoylation, due to the prevalence of palmitate as the lipid modification. Unlike many lipid PTMs, S-acylation is enzymatically reversible, enabling the cell to tune proteome-wide properties through dynamic alterations in protein lipidation status. While much has been uncovered about the molecular effects of S-acylation and its implications for physiology, current biochemical and chemical methods only assess substrate lipidation levels or steady-state levels of enzyme activity. Yet, the writer protein acyl transferases (PATs) and eraser acyl protein thioesterases (APTs) are dynamically active, responsible for sometimes-rapid changes in S-palmitoylation status of target proteins. Thus, to understand the full scope, significance, and subtlety of S-deacylation and its regulation in the cell, it is necessary to observe the timing and cellular geography of regulatory enzyme activities. In this Account, we review the chemical tools developed by our group to selectively visualize and perturb the activity of APTs in live cells, highlighting the biological insights gained from their application. To visualize APT activity, we masked fluorogenic molecules with thioacylated, peptide-based APT substrate mimetics; APT activity and thus thiol deprotection releases a fluorescent product in the turn-on depalmitoylation probes (DPPs), while in ratiometric depalmitoylation probes (RDPs) the emission of the parent fluorophore is altered. Application of these probes in live cells reveals that APT activity is sensitive to cell signaling events and metabolic disturbances. Additionally, as indicated above, the location of regulatory enzymes is critical in lipid signaling, and one organelle of particular interest, due to its role in maintaining cellular homeostasis and its legion of lipidated proteins, is the mitochondria. Therefore, we developed a class of spatially constrained mitoDPPs to visualize mitochondrial APT activity as well as a selective inhibitor of mitochondrial deacylation activity, mitoFP. With these tools, we identify two mitochondrial S-depalmitoylases and connect mitochondrial S-depalmitoylation to redox buffering capacity. Moreover, some of the changes in activity observed are specific to the mitochondria, confirming spatial as well as temporal regulation of eraser protein activity. Overall, this chemical toolkit for S-depalmitoylase activity, imaging reagents and a targeted inhibitor, will continue to illuminate the regulatory mechanisms and roles of S-depalmitoylation within the complex homeostatic networks of the cell.


Assuntos
Esterases , Esterases/química , Esterases/metabolismo , Humanos , Lipídeos/química , Modelos Moleculares , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA